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Preface 

This book arose primarily out of a compelling need for a comprehensive 
reference in bioinformatics that will cater to students, research, and indus-
try. We strongly believe that this new field evolved from the active interac-
tion of two fast-developing disciplines: biology and information technol-
ogy. Solving modern biological problems requires advanced computational 
methods. Key techniques include database management, data modeling, 
pattern recognition, data mining, query processing, and visualization of 
biological data. Until very recently, virtually all public databases were 
based on large flat files stored in simple formats. Navigation among data-
bases required expert knowledge and considerable patience. The huge 
quantities of biological data and escalating demands of modern biological 
research increasingly require the sophistication and computing power of 
information technology (IT) tools. More specifically, optimal use of these 
tools requires proximal information – knowing which data points are in the 
surrounding area of others. In this book, we will present methodologies 
and data structures for arriving at high quality biological information, 
which can then be used as foundation to develop practical tools for cluster-
ing and visualization in biological data mining and database management. 

Throughout the book, we will demonstrate the application of well estab-
lished concepts and techniques of information technology to the manage-
ment and analysis of biological data. Biological analysis requires the inte-
gration of software tools used in data mining, such as clustering, 
classification, decision trees and decision tables, and sequence and struc-
tural modeling such as data modeling. A distinctive feature of our book is 
the integration of advanced database technologies with visualization tech-
niques such as query-interactive user interfaces, visual descriptions, and 
advanced 3-D visual modeling. 

Biological data continue to grow exponentially in size and complexity. 
As a result, they introduce new data types not previously seen even in mo-
lecular biology. It is vital and urgent that advanced information technolo-
gies, in particular, database technologies and visual analysis, be applied to 
support biological research and innovation based on biological data. Spe-
cific IT-motivated activities are taking root in some parts of the biological 
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research community, and we foresee that they will benefit information 
technology. 

“Bioinformatics technologies” is a comprehensive book that covers 
these two important areas, viz., IT and biology, which have become inter-
woven in recent years. Many international experts have made contributions 
to this book. Each article is written in a way that a practitioner of bioin-
formatics can easily understand and then apply the knowledge gained to 
extract useful information from biological data. Each article covers one 
topic, and can be read independently of each other. The book provides both 
a general survey of the topic and an in-depth exposition of the state-of-the-
art. Practitioners will certainly find this book very resourceful and handy 
when looking for solutions to practical problems in bioinformatics. Re-
searchers can use this book as a source for obtaining background informa-
tion, current trends and developments; this provides them also with the 
most important references on these topics.  

The book covers the basic principles and applications of bioinformatics 
technologies. It also contains many articles that specifically address bioin-
formatics databases and emerging topics in bioinformatics technologies 
such as patterns discovery, data mining, simulation and visualization. The 
central issue in bioinformatics is how to transform biological data into 
meaningful and valuable information. It implies that the biological knowl-
edge related to the problem domain is incorporated into the requirements 
analysis phase of the bioinformatics. 

However, it has been recently recognized that in the twenty-first century 
bioinformatics will play an increasingly important role. For this reason, the 
international conference series on Asia-Pacific Bioinformatics (first bioin-
formatics conference in the IT domain) was founded in 2002. The underly-
ing goal behind this conference series is to recognize the interdisciplinary 
nature of bioinformatics in the interplay between biology and IT and how 
information technology can be applied to biology. 

Even though a great deal of attention is paid to this area in terms of re-
search and investment, the theoretical understanding needs further refine-
ment to bring the outcome of the biological analysis effectively to the ser-
vice of mankind. In editing this book, this viewpoint has been carefully 
taken into consideration to conceptually organize the recent progress in 
bioinformatics. 

The book is organized into twelve chapters that cover twelve important 
technologies in bioinformatics. 

Chapter1, Introduction to Bioinformatics, provides an overview of bio-
informatics technology, and different techniques within bioinformatics. 
Further, it introduces the relationships between the other chapters. 
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Chapter 2, Overview of Structural Bioinformatics, presents an overview 
of structural bioinformatics. The chapter describes organization of 
structural bioinformatics, the Protein Data Bank, secondary resources and 
applications, and using structural bioinformatics approaches in drug 
design. It also includes structural classification, structure prediction, 
functional assignments in structural genomics, protein-protein interactions 
and protein-ligand interactions. The role of structural bioinformatics in 
systems biology is also briefly discussed.  

Chapter 3, Database Warehousing in Bioinformatics, deals with the ba-
sics in database warehousing, transforming biological data into knowledge, 
data warehouse architectures and data quality in bioinformatics.  

Chapter 4, Data Mining for Bioinformatics, discusses the basics of data 
mining applicable to bioinformatics. The main types of data analysis, 
namely, biomedical data analysis, DNA data analysis, protein data analysis 
and microarray data analysis, are elaborated upon. Biomedical data analy-
sis includes a major nucleotide sequence database, a protein sequence da-
tabase, a gene expression database, and software tools for bioinformatics 
research. DNA data analysis covers DNA sequence and DNA data analy-
sis. Protein data analysis encompasses protein and amino acid sequence 
and protein data analysis.  

Chapter 5, Machine Learning in Bioinformatics, dwells on the theory 
behind machine learning applied to bioinformatics. It includes neural net-
work architectures and applications. We also describe other machine learn-
ing techniques, such as genetic algorithms and fuzzy systems. 

Chapter 6, Systems Biotechnology: a New Paradigm in Biotechnology 
Development, describes a new paradigm in biotechnology development 
called system biotechnology. It covers integrative approaches and in silico
modeling and simulation of cellular processes. 

Chapter 7, Computational Modeling of Biological Processes with Petri 
Net-Based Architecture, describes computational modeling of biological 
processes with a Petri net-based architecture, a hybrid Petri net and a 
hybrid dynamic net, and a hybrid functional Petri net. The chapter also 
covers the implementation of a HFPNe in a genomic object net and the 
modeling of biological processes with a HFPNe and a genomic object net 
and its visualizer. 

Chapter 8, Biological Sequence Assembly and Alignment, illustrates 
biological sequence assembly and alignment. It covers large-scale se-
quence assembly, Euler sequence assembly, PESA sequence assembly, 
large-scale pairwise sequence alignment, large-scale multiple sequence, 
alignment, and load balancing and communication overheads. 

Chapter 9, Modeling for Bioinformatics, covers the basics of modeling 
techniques related to bioinformatics. It includes the major modeling tech-
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niques, namely, hidden Markov modeling for biological data analysis, 
comparative modeling and molecular modeling. An elaborate discussion is 
made to apply hidden Markov modeling on biological data to have se-
quence identification, sequence classification, and multiple alignment gen-
eration. Comparative modeling comprises protein comparative modeling, 
comparative genomic modeling, and probabilistic modeling. The probabil-
istic modeling encompasses Bayesian networks, stochastic context-free 
grammars, and probabilistic Boolean networks. Finally, we describe mo-
lecular modeling, which deals with molecular and related visualization ap-
plications, molecular mechanics, and modern computer programs used in 
molecular modeling. 

Chapter 10, Pattern Matching for Motifs, addresses the issues in pattern 
matching for discovering motifs. Topics include gene regulation and pro-
moter organization. We include motif recognition and motif detection 
strategies. The chapter also includes two different approaches, namely, the 
single gene multi-species approach and the multi-gene multi-species ap-
proach.  

Chapter 11, Visualization and Fractal Analysis of Biological Sequences, 
deals with visualization and fractal analysis of biological sequences. It 
elaborates on the fractal analysis, the recurrent iterated function system 
model, the moment method to estimate the parameters of the IFS (RIFS) 
model, multifractal analysis, the DNA walk model, and chaos game repre-
sentation of biological sequences. Two-dimensional portrait representation 
of DNA sequences and one-dimensional measure representations of bio-
logical sequences are also introduced. 

Chapter 12, Microarray Data Analysis, discusses the techniques used to 
analyze microarray data and microarray technology used for genome ex-
pression study, image analysis for data extraction, and data analysis for 
pattern discovery. 

In a rapidly expanding area such as bioinformatics, no book can claim to 
cover the topics that suit the interests of everyone. However, it is hoped 
that this book is comprehensive enough to serve as a useful and handy 
guide for both practitioners and researchers. This book will help both IT 
professionals and biologists to understand the bioinformatics world. 

We would like to thank all authors who contributed the chapters in this 
book, without whom the mission would have been impossible. Special 
thanks to the reviewers for their professional inputs. We thank Ricky Chen 
and Chinnu Subramaniam for helping us check parts of the manuscript at 
short notice. We have taken care to cite referenced work. If we have 
missed any citation, we apologize for the lapse. We thank all researchers 
for their permission to use their figures in this book. We also wish to thank 
the Springer publisher Ralf Gerstner for his final step of checking and 
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timely help before publication. Finally, we wish to thank our families and 
friends for their support. 

We are sure that some errors may stay behind in the book. Your input 
for improvement will be helpful for future reprints and editions. Com-
ments, corrections, and constructive suggestions should be sent to Springer 
or by electronic mail to phoebe@deakin.edu.au 

January 2005 Yi-Ping Phoebe Chen 
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1 Introduction to Bioinformatics 

Yi-Ping Phoebe Chen 1, 2 

1 School of Information Technology 
Faculty of Science and Technology 
Deakin University, 221 Burwood Highway, VIC3125, Australia 

2 Australian Research Council (ARC) Centre in Bioinformatics 

1.1 Introduction 

This book is an introduction to what has come to be known as Bioinfor-
matics and Bioinformatics Technologies. The material in this book is pre-
sented from a non-biologist’s perspective, where emphasis is placed on ba-
sic concepts of Bioinformatics and technologies used to discover 
interesting biological data patterns unknown in large datasets. For a biolo-
gist, this book will present useful information on technologies that can be 
applied. Various methods that focus on the development of scalable and ef-
ficient bioinformatics technologies tools are discussed. In this chapter, you 
will learn how Bioinformatics is a part of the natural evolution of database 
technologies, why data mining, data modeling, machine learning, pattern 
matching, and visualization are important, and how they are defined. You 
will also learn about the general architecture of bioinformatics technolo-
gies and its applications. Why is it so important to understand biological 
problems? How can one understand a biological problem? How can one 
understand biological worlds from the points of view of information tech-
nology, computer science, mathematics, and commerce? These questions 
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are briefly answered. Furthermore, various types of biological data are dis-
cussed. This book explains the technologies that can be used for analysis, 
the nature of biological knowledge that can be found, and the bioinformat-
ics tools that can be applied. Finally, challenging research issues for build-
ing bioinformatics technologies, tools, and applications of the future are 
also discussed. 

1.2 Needs of Bioinformatics Technologies  

What is bioinformatics? Why is bioinformatics important? Bioinformatics 
has attracted a great deal of attention from various disciplines, such as in-
formation technology, mathematics, and non-traditional biological sciences 
in recent years. This is due to the availability of enormous amounts of pub-
lic and private biological data and the compelling need to transform bio-
logical data into useful information and knowledge. Understanding the cor-
relations, structures, and patterns in biological data are the most important 
tasks in bioinformatics. The information and knowledge from these disci-
plines can then be wisely used for applications that cover drug discovery, 
genome analysis and biological control. 

Bioinformatics can therefore be considered to be the combination of 
several scientific disciplines that include biology, biochemistry, mathemat-
ics, and computer science. It involves the use of computer technologies 
and statistical methods to manage and analyze a huge volume of biological 
data about DNA, RNA, and protein sequences, protein structures, gene ex-
pression profiles, and protein interactions.  

Specifically, bioinformatics encompasses the development of databases 
to store and retrieve biological data, of algorithms and statistics to analyze 
and determine relationships in biological data, and of statistical tools to 
identify, interpret, and mine datasets. Figure 1.1 illustrates the underlying 
definition of bioinformatics (Baxevanis and Ouellette, 2001; Kuonen, 
2003; Baldi and Brunak, 2001; and Westhead et al., 2002). 

The field of bioinformatics plays an increasing role in the study of fun-
damental biological problems owing to the exponential explosion of se-
quence and structural information with time (Ohno-Machado et al., 2002). 
Figure 1.2 shows the exponential growth of GenBank. 

As an example, the number of entries in a database of gene sequences in 
GenBank has increased from 1,765,847 to 22,318,883 in the last five years. 
These entries tend to double every 15 months (Benson et al., 2002). 

There are two major challenging areas in bioinformatics: (1) data man-
agement and (2) knowledge discovery.  
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Fig. 1.1. A illustration of a bioinformatics paradigm (adapted from 
http://www.bioteach.ubc.ca/Bioinformatics/whatisbioinform/) 

With the emergence of high-throughput technologies such as whole ge-
nome sequencing and DNA microarrays, large volumes of data are gener-
ated. The efficient management of this biological data is desirable. 

A challenge to data management involves managing and integrating 
the existing biological databases. There are several types of databases 
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available to researchers in the field of biology. The most widely used 
among them are 

• primary nucleic acid databases 
− GenBank (NCBI), 
− the Nucleotide Sequence Database (EMBL), and  
− DNA Data Bank of Japan (DDBJ) 

• protein sequences databases 
− SWISS-PROT, and  
− TrEMBL 

• structural databases  
− Protein Data Bank (PDB), and  
− Macromolecular Structure Database (MSD) 

• literature databases  
− Medline 

Fig. 1.2. The growth of data in GenBank (source: 
http://www.ncbi.nih.gov/Genbank/genbankstats.html) 

However, in some situations, a single database cannot provide answers to 
the complex problems of biologists. Integrating or assembling information 
from several databases to solve problems and discover new knowledge are 
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other major challenges in bioinformatics (Kuonen, 2003; Ng and Wong, 
2004; Wong, 2000; and Wong, 2002). 

The transformation of voluminous biological data into useful informa-
tion and valuable knowledge is the challenge of knowledge discovery. 
Identification and interpretation of interesting patterns hidden in trillions of 
genetic and other biological data is a critical goal of bioinformatics. This 
goal covers identification of useful gene structures from biological se-
quences, derivation of diagnostic knowledge from experimental data, and 
extraction of scientific information from the literature (Han and Kamber, 
2001; Jagota, 2000; Narayanan et al., 2002; and Ng and Wong, 2004). 

1.3 An Overview of Bioinformatics Technologies 

The term “bioinformatics” has been used with different meanings by dif-
ferent groups of scientists and researchers (Perry, 2000). According to 
these researchers, it means all bioinformatics activities related to genomics 
that focus on chromosome mapping and sequencing, and on exploring the 
functions of genes, functional genomics, and structural genomics. Besides 
supporting genomics, information technology supports a wide range of 
biosciences, such as human brain science and plant architecture, and com-
putational biology. The data are characterized by variety and heterogene-
ity: they are related to different organic structures, environments, and spa-
tial scales, and derive from multiple sources. Database management, 
artificial intelligence, data mining, and knowledge representation can pro-
vide key solutions to the challenges posed by biological data. However, 
these approaches require powerful and sophisticated computational tools to 
provide efficient solutions to very complex problems. Exciting opportuni-
ties are emerging by integrating molecular biology components of bioin-
formatics with computational, physiological, morphological, taxonomic, 
and ecological components. Addressing these challenging issues will help 
the life sciences to access, retrieve, analyze, and visualize data and rela-
tionships in a collaborative work environment. Even biomedical and health 
informatics can benefit from bioinformatics technologies. 

Bioinformatics can be viewed as naturally evolving from computer and 
biological sciences. This evolution has been investigated in the develop-
ment of the following functionalities: 

• biological data collection such as NCBI (http://www. ncbi.nih.gov/), 
GeneBank, DDBJ and PDB,  
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• biological data creation such as the human genome project, gene dis-
covery and gene expression,  

• biological databases such as EMBL, EMBI and SWISS-PROT,  
• biological data management such as bioinformatics data warehousing 

and Sequence Retrieval Systems (SRS),  
• biological data structures such as structural bioinformatics,  
• biological modeling such as HMM, comparative modeling, probabilis-

tic modeling and molecular modeling,  
• biological data analysis and exploration such as bioinformatics data 

mining, and biological understanding such as machine learning and 
pattern matching and visualization of biological sequences,  

• sequence analysis: sequence assembly and alignment, and  
• biological processes. 

Bioinformatics technology is an interdisciplinary field, a confluence of a 
set of technologies, as shown in Fig. 1.3. It includes database technologies, 
data mining, structures, process, modeling, visualization, machine learn-
ing, pattern matching, networks, and tools. 

Fig. 1.3. Technologies within Bioinformatics 
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The existing research in bioinformatics is related to knowledge discov-
ery, sequence analysis, structure analysis, and expression analysis. Se-
quence analysis is the discovery of functional and structural similarities 
and differences between multiple biological sequences. This can be done 
by comparing the new (unknown) sequence with well-studied and anno-
tated (known) sequences. Scientists have found that two similar sequences 
possess the same functional role, regulatory or biochemical pathway, and 
protein structure. If two similar sequences are from different organisms, 
they are said to be homologous sequences. Finding homologous sequences 
is important in predicting the nature of a protein. This helps greatly in the 
development of new drugs, and in the performance of phylogenetic analy-
sis. One proposed method for sequence comparison is sequence alignment. 
It is a procedure for base-by-base comparison of two (pairwise) or more 
(multiple) sequences by searching for a series of individual characters or 
character patterns that are in the same order in the sequences. To search for 
an identical character or character patterns, the string matching technique 
is widely used. Another active research area in the field of sequence analy-
sis is gene prediction. Gene prediction is the process of detecting meaning-
ful signals in uncharacterized DNA sequences. Gene prediction uses ho-
mology search to acquire knowledge of the interesting information in 
DNA. Figure 1.4 illustrates the existing works in knowledge discovery in 
bioinformatics. 

Structure analysis is the study of proteins and their interactions. Proteins 
are complex biological molecules composed of a chain of units, called 
amino acids, in a specific order. They are large molecules required for the 
structure, function, and regulation of the body’s cells, tissues, and organs. 
Each protein has unique functions. The structures of proteins are hierarchi-
cal and consist of primary, secondary, and tertiary structures. In other 
words, at the molecular level, proteins can be viewed as 3D structures. The 
understanding of protein structures and their functions leads to new ap-
proaches for diagnosis and treatment of diseases, and the discovery of new 
drugs. Current research on protein structural analysis involves comparison 
and prediction of protein structures.  

Expression analysis includes gene expression analysis and gene cluster-
ing. Basically, gene expression analysis is a study that determines the simi-
larities or differences of genes expressed in a particular cell type or tissue. 
Gene expression, represented by a matrix, can be determined in two ways. 
First, comparing the expression profiles of genes: if the expression profiles 
are similar, the genes are co-regulated and functionally related. Second, by 
comparing the expression profiles of samples, one can consider whether 
genes are expressed differently. Gene clustering aims to group together 
genes having similar expression profiles. Genes in a specific group are co-
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regulated and functionally related to each other rather than to genes in dif-
ferent groups. Due to the complexity and gigantic volume of biological 
data, the traditional computer science techniques and algorithms fail to 
solve the complex biological problems in the real world. 

Fig. 1.4. Knowledge discovery in Bioinformatics 

1.4 A Brief Discussion on the Chapters 

This book covers information technology as applicable to Bioinformatics. 
Chapter 1 provides an overview of bioinformatics and briefly discusses the 
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interrelationships between the different disciplines such as biology and 
computer science. Furthermore, it lists in a nutshell the technologies and 
tools used in bioinformatics. 

Chapter 2 provides an overview of structural bioinformatics. The re-
sources of protein structures such as the Protein Data Bank (PDB), and 
tools and their applications are also discussed. It also covers structural 
classification, structure prediction, and functional assignments in structural 
genomics. Further, protein-protein interactions and protein-ligand interac-
tions are clearly explained. The future of structural bioinformatics is also 
explored in this chapter. Chapter 2 offers a clear and concise overview that 
forms the foundation for Chap. 3 and part of Chap. 4. 

Chapter 3 deals with the basics of database warehousing related to Bio-
informatics. It dwells on the organization of bioinformatics data, and the 
techniques used to transform the data into meaningful information and 
knowledge. Data is stored in different databases located in different parts 
of the world, in different formats. This creates insurmountable problems 
for the bioinformatics community in the extraction of meaningful and reli-
able information. A detailed discussion is presented on data warehouse ar-
chitectures and data quality to address these problems. This becomes the 
basis for data mining, discussed in the subsequent chapter. 

Chapter 4 discusses techniques used in data mining for bioinformatics, 
such as biomedical data analysis, DNA data analysis, and protein data 
analysis. In order to discover knowledge from the vast genomic and pro-
teomic data, we need tools to deal with the data. Pattern discovery tools 
and visualization tools are discussed in this chapter. A brief discussion is 
presented on the theory underlying DNA and protein sequences. The ana-
lytical techniques for DNA sequence comparison, gene prediction, and 
phylogenic analysis are subsequently explained. In the case of protein data 
analysis, the popular techniques, such as neural networks and HMM, and 
tools such as DALI and VAST, are elaborated to throw light on the secon-
dary and tertiary protein structures. In order to mine reliable knowledge 
from biological data, efficient machine learning techniques are needed. 
These can be found in Chap. 5.  

As the growth of biological data has been enormous in the last decade 
alone, we need to have less-time-consuming and more-reliable techniques 
to deal with this situation. This can be done effectively only when artificial 
intelligence (AI) is introduced into the processing, as exemplified in the 
mature engineering fields. This opens new avenues for introducing the 
proven AI techniques for analyzing genome and proteome. Chapter 5 deals 
with the major machine learning techniques, namely, artificial neural net-
works, genetic algorithms, and fuzzy systems. The newly evolving support 
vector machine is also covered in brief. Further, this chapter explains the 
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underlying issues of these machine learning techniques when applied to 
complex biological data.  

Chapter 6 introduces an integrated approach, called systems biotechnol-
ogy, to understand the underlying biological processes and solve the com-
plex biological problems. The knowledge gained so far will help us to look 
at problems in an interrelated way. In systems biotechnology, various 
components, namely, experimental finding, modeling and simulation, and 
knowledge discovery are combined as a single system to gain insight into 
any biological organism. An interesting discussion can be found on the 
analysis of the E. coli genome using this approach. The chapter also dis-
cusses how a biotechnology process can be developed in a rational and 
systematic way. The tools necessary to implement this approach are also 
described in this chapter. One of the crucial components of this approach is 
the modeling of biological processes and data. Chapter 7 covers modeling 
and simulation. Chapter 7 and Chap. 9 explore all the major modeling 
techniques, and modeling and simulation, respectively. 

Chapter 7 uses a formal language approach called Petri nets for solving 
the problems of biological processes. It demonstrates the effectiveness of 
this approach developing a software tool that can model and simulate any 
complex biological process using a hybrid functional Petri net with Exten-
sion (HFPNe). It is also a novel integrated approach that complements the 
system biotechnology approach explained in Chap. 6. A generic XML 
format is introduced to describe biological processes with HFPNe. The 
importance of visualization in the simulation of biological processes is also 
discussed in this chapter. This chapter covers computational modeling of 
biological processes with Petri net-based architectures. It also describes 
hybrid Petri nets and hybrid dynamic nets, hybrid functional Petri nets, 
implementation of HFPNe in genomic object nets, modeling of biological 
processes with HFPNe, and modeling from DNA to mRNA in eucaryotes 
and genomic object nets.  

When the data to be analyzed is huge, the computational time required 
to analyze the data may run into days, or into months in some cases. Paral-
lel computing alleviates this problem by making the processors efficiently 
use robust algorithms. Chapter 8 discusses parallel biological computing. 
The main components of intensive biological computing, namely, se-
quence assembly and sequence alignment, are discussed in this chapter. 
They have benefited a lot from parallel computing and will benefit more 
from the further research on parallel biological computing. This chapter in-
troduces recent research on parallel sequence assembly and alignment. 
This chapter also provides good coverage of the main methods used in se-
quence assembly and sequence alignment.  
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Modeling plays a major role in the advancement of science and technol-
ogy in any field since a good model will eventually become automated in 
the computational process. Bioinformatics is no exception. Chapter 9 de-
scribes modeling in bioinformatics: any representation that simulates a 
model of biological process. This chapter deals with important modeling 
approaches used in bioinformatics, namely, hidden Markov models 
(HMM), comparative modeling, probabilistic modeling, and molecular 
modeling. HMM has already taken a strong root in bioinformatics after its 
widespread use in speech recognition. Comparative modeling does great 
service to drug discovery as it relates the structure and functions of the 
protein as well as the gene. This chapter provides a detailed discussion on 
comparative modeling of proteins and genes. The theory of probability has 
made inroads into bioinformatics as well. The main probabilistic modeling 
techniques, namely, (1) Bayesian networks, (2) stochastic context-free 
grammars, and (3) probabilistic Boolean networks, are discussed. In order 
to understand the biological processes properly, knowledge of the mole-
cule and molecular interactions are very much needed so that the projected 
functionality of any new drug under development can be verified. Molecu-
lar modeling provides such knowledge in the form of the molecular struc-
ture in terms of structural attributes such as bond angle, bond length, tor-
sion angle, and potential energy. Further, the simulation that comes out of 
this modeling paves a way for further research into the intricacies of the 
molecular dynamics. 

In all the chapters we have so far discussed the techniques or modeling 
to retrieve information from the molecular sequences. Chapter 10 discusses 
how we can locate a particular segment of the sequence, known as the mo-
tif or pattern, which is responsible for a particular manifestation such as a 
disease. This chapter deals with pattern matching and motif discovery. The 
major computational approaches used to find motifs are clearly described. 

Knowledge of the spatial geometry sheds light on molecular structure. 
Fractal theory deals with such spatial geometry. It provides a mathematical 
formalism to describe any complex spatial and dynamic structure. It has 
been successfully applied to the study of many problems in science and 
engineering. Application of fractal theory on the structure of DNA and 
proteins is expected to solve complex problems that seem incomprehensi-
ble at the moment. Chapter 11 presents some tools built on the theory of 
fractal geometry that may play a useful role in solving biological problems. 
This chapter discusses the popular multifractal analysis used to character-
ize the spatial heterogeneity of both theoretical and experimental fractal 
patterns in DNA and protein sequences. 

As we are aware, DNA contains numerous genes. The functions of each 
gene are not fully explored. Using traditional methods, several experiments 
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need to be conducted to find out the functions of a single gene alone. 
However, modern technologies create opportunities to conduct experi-
ments to find out the locations and the functions of genes simultaneously, 
using a technique called a microarray. Thousands of DNA samples are 
coated with glass or nylon in the form of a two-dimensional array, and en-
capsulated in a microchip for spectroscopic analysis. Chapter 12 deals with 
the microarray technique and microarray data analysis. It also explains 
knowledge discovery, data mining, clustering, and classification. Tech-
niques on protein information resources and DNA sequence analysis are 
also covered. 
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2.1 Introduction  

If we define bioinformatics as the development of algorithms and data-
bases for understanding biological systems, then structural bioinformatics 
represents the subset that deals, directly or indirectly, with the structure of 
macromolecules. Structural bioinformatics includes study of the structures 
of DNA, RNA, and proteins. In this chapter we will be focusing primarily 
on the resources associated with protein structures. Knowledge of the pro-
tein structure allows us to investigate biological processes more directly 
and with much higher resolution and finer detail. For example, strikingly 
more details of protein-protein interactions can be obtained from the struc-
ture of the protein complex than from that of yeast two-hybrid assay. 
However, determination of protein structures is experimentally expensive 
and time consuming; this may explain why at the present time scientists 
are largely dependent on sequence rather than structure to infer the func-
tion of the protein. With the advent of structural genomics, we expect to 
systematically and rapidly solve a large number of macromolecular struc-
tures. 
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Knowledge of a large number of protein structures gives us a bird’s-eye 
view of protein fold space, as can be seen from Fig. 2.1, and is helpful to 
understand the evolutionary principles behind structure, which architec-
tures and topologies are observed (and why), which topologies are preva-
lent or avoided, and how the structure of the protein affects its function. A 
well populated protein universe might be the most important resource for 
assigning structures to sequences without solving them crystallographi-
cally, rather than by using predictive methods. As structure determination 
will be lagging far behind genomic sequencing for considerable time, the 
predicting protein structures will remain an important and valuable ability. 
At present, structural bioinformatics is in its renaissance, with large 
amounts of structural data, and well developed (and ever increasing) arse-
nal of algorithms, applications and databases. Its contribution to the ad-
vancement of understanding biological systems can hardly be overesti-
mated. 

Fig. 2.1. A 3D representation of protein fold space measured in terms of structural 
similarities. Each sphere represents a protein family; proteins are characterized on 
the most global level as yellow (all β), red (all α), blue (α+β), and cyan (α/β). The 
Figure is reprinted with permission from Hoy J et al. (2003) 
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2.2 Organization of Structural Bioinformatics 

It can be useful to organize the resources in structural bioinformatics along 
the following lines. The structural information about molecules – the 3-
dimentional atomic coordinates of structures – is the core from which all 
the other details are derived (Fig. 2.2); it is a primary resource of structural 
data and is central to everything else. The files containing atomic coordi-
nates are uninformative to the majority of structural biologists; thus, there 
are algorithmic tools (applications) that transform, classify, analyze, and 
model this primary data. The results of the data analysis are often (but not 
always) stored in other databases, considered to be secondary resources, 
since they contain value-added information. The overall schema starts with 
a primary resource to which various algorithms are applied to generate 
multiple secondary resources. Protein Data Bank (PDB) is an example of a 
primary resource; CE (combinatorial extension, structural comparison of 
proteins) is an example of an algorithm applied to the primary data, whose 
results the structural alignments of proteins are captured in the secondary 
resource. Algorithmic tools and the secondary resources can be divided 
into several broad categories: visualization, structural classification, struc-
tural alignment/structure modeling, structure prediction, and protein-
protein/protein-ligand interactions. 

Fig. 2.2. Conceptual organization of resources in structural bioinformatics 
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2.3 Primary Resource: Protein Data Bank 

Protein Data Bank (PDB), at http//www.pdb.org) (Bernstein et al., 1977, 
and Berman et al., 2000), the first biological database, was established in 
1971 to store 3D biological macromolecular structures. Originally housed 
at Brookhaven National Laboratories, USA, it is now managed and main-
tained by the Research Collaboratory for Structural Bioinformatics 
(RCSB), which is a collaborative effort involving scientists at the San 
Diego Supercomputer Center, Rutgers University, and the National Insti-
tute of Standards and Technology. The PDB contains publicly available 
3D structures of proteins, nucleic acids, and a variety of other complex 
biomolecules experimentally determined by X-ray crystallography, NMR 
spectroscopy, and, most recently, cryoelectron microscopy. 

2.3.1 Data Format 

The historical format used by PDB is the PDB format. It consists of a col-
lection of fixed format records that describe the atomic coordinates, 
chemical and biochemical features, experimental details of the structure 
determination, and some structural features such as hydrogen bonds and 
secondary structure assignments. The exact PDB format specification is 
available through the PDB Website. In recent years, dictionary-based rep-
resentations emerged to give data a consistent interface, making it easier to 
parse. A widely used dictionary-based format is the macromolecular crys-
tallographic information file (mmCIF). The underlying data organization 
in an mmCIF is a set of relational tables. The mmCIF dictionary is an on-
tology that describes macromolecular structure and the various experi-
ments used to derive it (Bourne et al., 1997). It is used as the basis for the 
new RCSB PDB software system. 

2.3.2 Growth of Data 

When the PDB archive began, seven structures were deposited. At the time 
of this writing, the PDB contained 24,358 structures. Figure 2.3 shows the 
growth of PDB structures in both number and complexity. The current 
breakdown of the types of structures in the PDB can be found at 
http://www.rcsb.org/pdb/statistics.html. 
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(a) 

(b) 
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(c) 

Fig. 2.3. (a) The total number of structures available in the archive per year up to 
2001 (due to Prof. David Goodsell at Scripps Research Institute). (b) The number 
of structures deposited per year (in red) and number available per year (up to 
2003). (c) The number of structures with a specific number of chains versus year. 
Figure (c) illustrates the increase in molecular complexity versus year 

2.3.3 Data Processing and Quality Control 

A key component of the PDB is efficient data processing that consists of 
three steps: data deposition, validation and annotation. Validation refers to 
the procedure for assessing the quality of deposited atomic models (struc-
ture validation) and for assessing how well these models fit the experimen-
tal results (experimental validation). Annotation refers to the process of 
adding information to the entry. Examples are SwissProt identifiers and 
consistent functional descriptors. The PDB uses accepted community stan-
dards to validate structures. A number of checks are run and the results are 
summarized in an email directly communicated to the depositor. For de-
tails on data processing, please refer to Chapter 9 of Structural Bioinfor-
matics (Bourne and Weissigm, 2003). The PDB continuously reviews the 
validation methods being used and will continue to integrate new proce-
dures as they are accepted as community standards. 
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2.3.4 The Future of the PDB 

The RCSB PDB is currently reengineering its site and databases, and the 
new site is expected before the end of 2004. The new system (Bourne, et 
al., 2004) uses an Enterprise Java framework and is based on the MVC 
(Model, View, Controller) design pattern. Extensive efforts have been 
made to redesign a relational database built entirely from the curated 
mmCIF files, which will allow improved query access to the unified data. 
As a primary data source, PDB has been referred to by many secondary 
data sources. In the new system, PDB will include secondary information 
back into the PDB in a feedback loop. Examples are details of various 
structure classification schemes, gene ontology terms describing molecular 
function, involvement in biochemical processes, and cellular location, and 
specificity of disease. 

2.3.5 Visualization 

Visualization is important to help users interpret scientific data in many ar-
eas of bioinformatics. It is particularly important in structural bioinformat-
ics since the foundation of this field is the 3D structure of biological mac-
romolecules, which can only be interpreted using a molecular graphics 
program. Historically, to run a visualization program, a user needed to in-
stall and configure the program locally. With the advent of the World 
Wide Web, users can run increasingly complex applications without hav-
ing to explicitly download them, relying instead on the Web page’s deliv-
ery with a single mouse click. Table 2.1 lists a few examples of free struc-
ture visualization tools; for a more complete list, please see page 150 of 
Chapter 7 in Structural Bioinformatics (Bourne and Weissig 2003). 

Table 2.1. A Subset of free structure visualization tools 

Name Description URL 

MICE Collaborative visuali-
zation tool 

http://mice.sdsc.edu/site/project.html 

MolScript Command-driven, 
OpenGL based tool 

http://www.avatar.se/molscript/ 

PyMOL Python-based visuliza-
tion tool 

http://pymol.sourceforge.net/ 

Rasmol Lightweight interactive 
structure viewer 

http://www.umass.edu/microbio/rasmol/ 

WebMol Web deliverable java 
applet program 

http://www.cmpharm.ucsf.edu/~walther/
webmol.html 
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Most visualization applications are distributed as individual programs, 
and the users have to accept the deliverables determined by the author. 
Changes and enhancements are usually under the immediate control of the 
author of a given package. A more efficient solution is to provide users 
with high-level toolkits from which they can quickly develop custom ap-
plications and have all the flexibility to change and enhance these pro-
grams. The Molecular Biology ToolKit (MBT) (http://mbt.sdsc.edu), writ-
ten in Java and Java3D and the MGL project (http://www.scripps.edu/ 
pub/olson-web/), written in Python, stand out. 

2.4 Secondary Resources and Applications 

Secondary resources are value-added structural databases; they are fre-
quently the result of data reduction by using algorithms or human exper-
tise. Secondary resources and associated algorithms/methods are grouped 
based on type, namely, structural classification, structure prediction, func-
tional assignments, protein-protein interactions, and protein-ligand interac-
tions. 

2.4.1 Structural Classification 

Structural classification is a process of grouping proteins together by their 
level of 3D and sequence similarity. Clustering proteins by structural simi-
larity is fundamental for the conceptual organization of the protein space, 
as well as for understanding evolutionary relationships among proteins. 
Structural classification is based on the striking observation made in early 
days of structural biology that structure is far more highly conserved than 
sequence. In short, protein fold space is limited (Levitt and Chothia, 1976, 
and Lesk and Chothia, 1980). This intriguing property is the result of phys-
ico chemical principles guiding the behavior of macromolecules and of 
evolutionary constraints. Proteins can diverge so that their sequence rela-
tionship is undetectable, but their folds remain the same. Alternatively, and 
less frequently, different functional proteins can converge to the same sta-
ble fold. 

Structural classification is initially built by cross-comparison of known 
protein structures (“all-against-all” comparison) either manually by experts 
of using structural alignment algorithms. Hierarchy within classification 
(going from similarity on a very general level toward the level of detailed 
similarity in the architecture and topology) is achieved by repeating struc-
tural cross-comparison based on different alignment criteria. Classification 
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can be done by comparing structures of the entire protein or, more fre-
quently, by comparing structures of individual domains comprising the 
protein: both approaches exist in today’s classifications, as is described be-
low. A domain is regarded as a discrete folding unit that can be observed 
in different proteins. 

Structural comparisons (alignments) 

Structural alignment refers to the comparison of two structures without a 
priori knowledge of any equivalent residues (as opposed to structure super-
imposition, where some residues in two structures are defined as equiva-
lent and the distances between corresponding residues are minimized). The 
majority of structure alignments are pairwise comparisons. The compari-
son process can be divided into three major steps: (1) representation of two 
structures in coordinate-independent space, (2) comparison and optimiza-
tion, and (3) measuring the statistical significance of alignment against a 
random set of structures. Different alignment methods use different tech-
niques as shown in Table 2.2. In general, there is a tradeoff between geo-
metric alignment quality and its biological significance. It is possible to get 
highly aligned segments, but such segments are usually short, and are not 
biologically meaningful. On the other hand, longer regions of the structure 
will frequently have lower alignment resolution and consequently lower 
statistical significance. It is not simple to strike a balance between these 
two requirements. In the majority of implementations, the structures are 
compared as rigid bodies – no movement within the structure is allowed 
(Taylor and Orengo, 1989; Alexandrov et al., 1992; Holm and Sander 
1993, Gibrat et al., 1996; and Shindyalov and Bourne, 2001). One devia-
tion from this assumption is flexible alignment in which a limited number 
of motions in one structure is allowed in order to optimize the alignment 
(Shatsky et al., 2002, and Ye and Godzik, 2003). 

Multiple alignments of structures are potentially more valuable, yet 
more difficult to accomplish algorithmically. A trivial approach is a pro-
gressive alignment, in which each of the structures are aligned one at a 
time to the template; superimposition of all the structures is the final result. 
This approach is heavily biased toward the structure chosen as a template 
and in reality, does not consider information simultaneously from multiple 
structures. Some improvements can be obtained by finding a median struc-
ture in the group and aligning all other structures to it (Gerstein and Levitt, 
1996). A true multiple alignment attempts to provide the best consensus 
among all the structures. One approach is to start with a progressive 
alignment and proceed through a set of random moves in an attempt to op-
timize the multiple alignment (Shindyalov and Bourne, 1998). Each move 



24 Qing Zhang, Stella Veretnik, Philip E. Bourne 

is scored and accepted with a certain level of probability; the process con-
tinues until convergence. Aligning individual secondary structure elements 
without regard to their position within molecules is yet another approach 
(Dror et al., 2003). Multiple structural alignments can then be similarly 
used to define sequence profiles and may be a powerful tool for identifying 
remote family members in which some structural similarity is retained, but 
sequence similarity is too weak to detect. Multiple structural alignment is 
still in its infancy, with the most successful alignments being constructed 
by hand (Sowdhamini et al. 1998). 

Table 2.2. Structure comparison resources. 

Method for 
structure 

comparison 
Description 

Pairwise rigid structural alignment 

CE 

Combinatorial Extension of the optimum path (Shindyalov and 
Bourne, 2001). Uses Cα distance matrix for optimal alignment of 
octameric fragments. Alignments are progressively extended in 
three consecutive decision-making steps; empirical thresholds are 
used at each step. http://cl.sdsc.edu/ce.html 

COMPARER 

Examines residues’ and segments’ properties; finds the best com-
binations using a combinatorial simulated annealing technique 
(Sali and Blundell, 1990). http://www-
cryst.bioc.cam.ac.uk/COMPARER/ 

DALI 

Distance matrix ALIgnment (Holm and Sander, 1993). Regions of 
structural overlap are identified using distance matrices based on 
Cα coordinates. Overlapping regions are later stitched together. 
http://www.ebi.ac.uk/dali/ 

GRATH 

GRAfical meTHod for identifying folds (Orengo et al., 2003). 
Vector-based comparison of secondary structure elements, using 
orientation, tilt, and rotation of elements, Fast and suitable for 
large-scale structure comparisons. 
http://www.biochem.ucl.ac.uk/cgi-bin/cath/Grath.pl 

SARF2 

Spatial Arrangement of backbone Fragments (Alexandrov et al., 
1992). Uses relative positioning of secondary structure elements 
in order to identify largest common ensembles. 
ttp://123d.ncifcrf.gov/sarf2.html 

SSAP

Sequence Structure Alignment Program (Taylor and Orengo, 
1989). Uses double dynamic programming for optimal structure 
alignment based on Cβ- Cβ distances among selected positions. 
http://www.biochem.ucl.ac.uk/cgi-bin/cath/GetSsapRasmol.pl 
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VAST 
Vector Alignment Search Tool (Gibrat et al., 1996). Aligns sec-
ondary structure elements of the molecules. 
http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml 

Pairwise flexible structural alignment 

FATCAT 

Flexible Structure AlignmenT by Chaining fragment pairs Allow-
ing Twist (Ye and Godzik, 2003). Optimizing the alignment and 
minimizing the number of rigid body movements around the piv-
otal points. http://ffas.ljcrf.edu/fatcat 

FLEXPROT 
Aligns two structures by allowing movement of the substructures 
(around identified hinges) (Shatsky et al., 2002). 
http://bioinfo3d.cs.tau.ac.il/Software/Align/FlexProt/flexprot.html 

Multiple rigid alignment 

CE-MC CE for multiple structure alignment using a Monte Carlo Method. 
http://cl.sdsc.edu/mc/mc.html 

MUSTA 

Determines short regions common to all structures, extends the 
structures by combinatorial clustering of superpositions 
(Leibowitz et al., 2001). 
http://bioinfo3d.cs.tau.ac.il/Software/Align/Musta/musta.html 

MULTI-
PROT 

Finds the common geometric core between input structures 
(Shatsky et al., 2002). http://bioinfo3d.cs.tau.ac.il/MultiProt/ 

MASS
Multiple Alignment of Secondary Structures(Dror et al., 2003). 
Uses secondary structure representation, disregards sequential or-
der of the elements. http://pc-gamba.math.tau.ac.il/MASS/ 

Structural domains 

Structural domains in proteins can be broadly defined as semi-independent 
structural units that have a hydrophobic core, are capable of folding inde-
pendently in the absence of the rest of the protein, and have an identifiable 
function. The typical size of domains is in the range of 60 to 400 residues. 
It is possible to view the protein universe from the perspective of structural 
domains: each protein is characterized as a single domain or a combination 
of two or more domains. Classification of protein structures can then be 
reduced to the classification of all structural domains found in proteins, for 
example, SCOP, as discussed subsequently. The numbers and boundaries 
of structural domains are frequently ambiguous, and some protein struc-
tures can have more than one reasonable partitioning into structural do-
mains. This is exactly what one observes when one compares three differ-
ent protein classifications: CATH, DALI, and SCOP. In about 20% of the 
cases, the same proteins have different numbers of domains in different 
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classifications (Fig. 2.4). This inconsistency reflects immaturity in the field 
of structural bioinformatics. Domain definition methods are summarized in 
Table 2.3. 

Fig. 2.4. A typical case that show differences between classifications. The same 
protein 1gpb (glycogen phosphorylase B) is treated as one-, two- or five-domain 
protein in different classifications schemes 

Examples of structural classifications 

The three best known comprehensive structural classifications of proteins 
are CATH (Orengo et al., 1997), DaliDomainDictionary (Holm, 1998) and 
SCOP (Murzin et al., 1995). They represent different approaches to mak-
ing a classification: SCOP is based on visual inspection and classification 
by human experts; the Dali Domain Dictionary uses completely automated 
classification, while CATH employs both algorithms and human expertise 
in its structural assignments. 

SCOP is maintained by Murzin et al. (1995) and classifies protein struc-
tures into 4 hierarchical levels: Class (most general), Fold, Superfamily 
and Family. The structure is first partitioned into structural domains and 
then characterization is carried out on each individual domain. At the top 
level of the hierarchy, there are four major classes. They are defined in 
terms of secondary structures that contain: all α, all β, α/β, and α+β, and 
sevenminor classes. In α+β class α-helices and β-sheets are largely sepa-
rated in sequence and in 3D-dimentional space, while in α/β class, β-
sheets are packed close to α-helices, often β-sheets and α-helices alternate. 

Fold is the second level of classification and contains proteins that have 
the same major secondary structures in the same arrangements with the 
same topology. The overall structural similarities within fold are not al-
ways due to evolutionary relatedness of the proteins, but can be also due to 
physicochemical properties favoring certain packing arrangements. Thus, 
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both functional diversion and functional conversion can be reasons for pro-
teins sharing the same fold. 

Proteins are further characterized into families. Proteins within the same 
family have the same fold, a clear evolutionary relationship, and a com-
mon function. Finally, proteins that belong to the same superfamily have 
also the same fold; although the homologous relationship is more tenuous, 
yet believed to exist. 

Table 2.3. Structural domain resources 

Resource Description 

SCOP 

Manually curated hierarchical database of protein 
structures (Murzin et al., 1995). Purely structural 
classification of domains. 
http://scop.berkeley.edu 

SUPERFAMILY 

SCOP-defined superfamilies are represented by 
Hidden Markov Model (Gough, Karplus et al. 
2001). 
http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/ 

CATH 

Semi-automatically hierarchically constructed data-
base of protein structures (Orengo et al., 1997). De-
fines domains based purely on structure.  
http://www.biochem.ucl.ac.uk/bsm/cath/ 

Dali Domain Dictionary 

Automatically constructed database of domains 
based on structural definition of domain (Holm, 
1998). 
http://www.ebi.ac.uk/dali/domain/3.1beta/ 

CDD 

Domains as defined in SMART, PFAM and COG, 
e.g. a mixture of structure and sequence analysis 
(Marchler-Bauer et al., 2003). 
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.sht
ml

SMART 

Focuses on domains found in extracellular, signal-
ing and chromatin-associated proteins (Schultz et 
al., 1998). Uses combination of sequence and struc-
ture analysis. 
http://smart.embl-heidelberg.de/ 

PFAM

A collection of multiple sequence alignments with 
inclusion of structural data (from SCOP) where 
possible (Bateman et al., 2004). A combination of 
sequence and structure analysis. 
http://www.sanger.ac.uk/Software/Pfam/ 
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CATH classification is maintained by Orengo et al. (1997) and is organ-
ized into four hierarchical levels: class, architecture, topology, and homol-
ogy, and is not fundamentally different from SCOP, but is different in the 
details. Again, the classification is performed on the level of structural 
domains, but unlike SCOP, CATH utilizes an array of algorithmic methods 
(augmented by human expertise), first to determine protein domains and 
then to find structural similarities. A consensus approach is applied during 
the domain assignment step, in which three different algorithmic applica-
tions, PUU (Holm and Sander, 1994), Domak (Siddiqui and Barton, 1995) 
and DETECTIVE (Sowdhamini et al., 1998) are called to assign a domain 
to a given structure. The automatic domain partitioning is accepted if all 
three methods produce similar domain assignments, which happens in ap-
proximately 50% of the cases. In the other 50%, the algorithms disagree 
and the domain assignment is performed by a human expert. A recent de-
velopment is the application of GRaphical meTHthod for identifying folds 
(GRATH), which is a sequence comparison program. GRATH is em-
ployed to identify domains within the proteins by scanning a given protein 
against a library of known structural domains. 

Dali Domain Dictionary classification is a completely automated classi-
fication from Holm and Sander (1998). In the case of DALI structure com-
parison, the algorithm was applied on the level of the entire protein to cre-
ate a “protein universe” populated with clusters of folds. The FSSP 
resource is now being phased out and replaced by the Dali Domain Dic-
tionary classification of protein space on the level of structural domains. 
Dali Domains are defined automatically using the principles of structure 
compactness and structure recurrence. 

2.4.2 Structure Prediction 

It is commonly accepted that the structure of a protein is uniquely deter-
mined by its sequence; hence, knowing the sequence should, in principle, 
be sufficient to obtain the structure. This would be very valuable in under-
standing protein functions of a wide variety of proteins, particularly since 
experimental methods (X-ray and NMR, primarily) remain slow and costly 
relative to sequence determination. Homology modeling, fold recognition 
and ab initio methods are presently the three major approaches in structure 
prediction. 

Although gene prediction is common in bioinformatics and computa-
tional biology, only the progress of structure prediction is measured in a 
quantitative way, by the Critical Assessment of Structure Prediction 
(CASP) and the Critical Assessment of Fully Automated Structure Predic-
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tion (CAFASP) experiments. As an aside, CAPRI (Critical Assessment of 
Predicted Interactions) is the latest CASP-like experiment that focuses on 
the prediction of the detailed docking of pairs of protein molecules. A spe-
cial issue has been published on the first rounds of results(Janin et al., 
2003), with predictions on seven targets from 20 groups. The results indi-
cate a need for better scoring functions and better techniques to handle 
conformational changes that occur in some cases of protein complexes. 

CASP The primary goals of the CASP experiment are to establish the 
capabilities and limitations of different structure prediction approaches, 
and to determine where progress is being made and where the field is held 
back by specific bottlenecks. A high level of participation from the predic-
tion community is critical to the success of the experiment. The overall 
participation has steadily increased from 34 groups in CASP1, to 70, 98, 
163, and in CASP5, 216 (Moult et al., 2003). The evaluation from CASP5 
of each major prediction is presented in the following paragraphs. In 
CASP5, the prediction of disorder in protein structures was included for 
the first time. 

Homology Modeling (comparative modeling) is based on the observa-
tion that the structure changes much more slowly than the associated se-
quence during evolution. It can be used when there is strong similarity in 
the sequence of a protein of unknown structure to that of a different protein 
of known structure, most likely found in PDB. Homology modeling is the 
easiest approach; however, it requires a sequence close enough to the 
known structures. The process of homology modeling can be summarized 
in seven steps: template recognition and initial alignment, alignment cor-
rection, backbone generation, loop modeling, side-chain modeling, model 
optimization, and model validation. The assessment from CASP5 con-
cluded that homology modeling is able to produce models, though only 
partially accurate, for proteins having very distant relationships with pro-
teins of known structure (Tramontano and Morea, 2003). 

Fold Recognition finds structural similarities when sequence similarity 
is low. A successful structure prediction in this category produces a model 
that can be inferred to have structural similarity to a known fold, but no 
immediately obvious sequence similarity. Fold recognition methods de-
pend on advanced sequence alignment methods, comparisons of secondary 
structures, and the threading of sequences into a variety of templates in or-
der to find a favorable hit. The conclusions from CASP5is that the tem-
plate-based methods and fragment assembly-based methods perform well 
in protein structure prediction, but the correct prediction of multiple-
domain proteins in general remains a challenge (Kinch et al., 2003). 

Ab initio Methods (renamed new fold recognition methods at CASP4) 
seek to predict the native conformation of a protein from its sequence 
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alone. They rely only on general physical principles and not on any exist-
ing structure on sequence data. David Baker’s group developed a method 
to build structures from protein fragments. This method is based on a 
model of folding in which short segments (nine residues long) of the pro-
tein chain flicker between different local structures, consistent with their 
local sequence, and folding to the native state occurs when these local 
segments are oriented such that low free energy interactions are achieved 
throughout the protein(Simons et al., 1997). The conclusions from CASP5 
in this category were:  

• The quality of the best predictions was very good; for nearly every tar-
get, at least one group predicted a structure close to the correct one.  

• Predictions for secondary structure showed, at best, limited progress 
since CASP4. For contact predictions, accuracies were still low, al-
though there were several instances of accurate and useful contacts pre-
dicted de novo (Aloy et al., 203). 

Prediction of Disordered Regions in Proteins Proteins are flexible and 
pliable molecules; often specific regions within proteins are intrinsically 
unordered, i.e., they exist in many different conformations to function. 
Disordered regions in proteins can be predicted from sequence, based on 
properties such as hydrophobicity, sequence complexity, charge and se-
quence composition. Several models have been proposed (Jones and Ward, 
2003, and Obradovic et al., 2003) and a separate session at CASP5 was 
dedicated to the prediction of disordered regions in protein (Melamud and 
Moult, 2003). 

As prediction methods have advanced, the distinctions between homol-
ogy modeling, fold recognition and ab initio methods have blurred. The 
CASP and CAFASP experiments move the structure prediction field for-
ward. The increasing need for targets to test predictions has been partially 
met by the PDB, where, with approval from depositors, sequences are re-
leased prior to structures. The recent development in structural genomics 
also provides a large pool of targets for structure prediction (see 
http://spam.sdsc.edu/sgtdb for targets and predictions). 

2.4.3 Functional Assignments in Structural Genomics 

What exactly a protein does, and how; when and where in the cell is it ac-
tive; how is it regulated; and what are its interacting partners? These ques-
tions are traditionally answered by a battery of biochemical and genetic as-
says, most of which are complex and time consuming. It is, therefore, 
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enticing to consider bypassing the traditional experimental methodologies, 
or at least supplementing them, and being able to assign a function to the 
protein simply from its sequence or structure. 

The principal assumption underlying functional assignment is that pro-
teins with similar sequences have similar functions. Thus, we can transfer 
what we know about the function of one protein to the other, as long as 
they share a reasonable level of sequence similarity. Very roughly, proteins 
that have greater than 40% sequence identity can be confidently assumed 
to have the same or similar structure, and most likely share the same func-
tion. It is important to verify that sequence conservation extends to func-
tional site residues. However, even then there are exceptions, cases in 
which homologous proteins have different functions, as with lysozyme and 
α-lactalbumin (Acharya, Ren et al. 1991). When sequence identity falls be-
low 30% (the 20 to 30% range is referred to as “twilight zone”, and below 
it is a “midnight zone”), functional prediction from the sequence alone be-
comes inconclusive. At this point, structure becomes an important tool to 
facilitate functional prediction. 

Table 2.4. Resources for functional assignment from structure 

Function prediction 
resource 

Description 

PROCAT 

Provides 3D enzyme active site templates. 
http://www.biochem.ucl.ac.uk/bsm/PROCAT/PROCAT.h
tml

FFF
Fuzzy Functional Form Describes active sites in proteins 
in terms of a-carbon positions (Fetrow et al., 2001). 

SPASM
Spatial Arrangement of Side-chain and Main-chain 
(http://xray.bmc.uu.se/usf/spasm.html) 

Molecular Recog-
nition 

Identifies spatial arrangements of atoms around a particu-
lar chemical moiety (Kobayashi and Go, 1997)  

Side-chain patterns 

Detects active sites in proteins through the pattern of side-
chain arrangement and sequence conservation (Russell, 
1998).  

As high throughput structural genomics progresses, the number of 
solved structures about which we know nothing is growing. The ability to 
assign functions to these structures will depend directly on the quality of 
our predictive methods. Several general approaches can be used in func-
tional prediction. If we can identify proteins with similar sequences that 
have functional annotation, the annotation can, in general, be safely trans-
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ferred. If there is no protein with similar sequence, functional annotation 
can be transferred from a protein with a similar structure (see above on 
structure comparison). Similarity of overall structure (fold) is a poor pre-
dictor of function, particularly for enzymes, as some folds are involved in 
many different types of reactions (Hegyi and Gerstein, 1999). Comparing 
spatial positioning of functional residues (in addition to the overall fold) is 
a more successful approach to identifying structures with similar function 
(see Table 2.4). Finally, if no similar structures exist, a rough ab initio pre-
diction can be made, by looking for clefts in the structure, as active sites 
are often situated in the largest cleft (Laskowski et al., 1996). 

It should be noted that the transfer of functional annotation based on 
structure similarity is mired with problems such as multifunctional pro-
teins, proteins with very similar active sites butdifferent functions, and pro-
teins with different folds and similar functions. Most of them reflect our 
incomplete understanding of structure-function relationships. Additional 
information is often sought to increase the confidence of prediction based 
on protein structure; identifying interacting partners of the protein is one 
such approach. 

2.4.4 Protein-Protein Interactions 

Proteins rarely function in isolation: rather, they form complexes. Exis-
tence of protein complexes might be unavoidable in the cell since “proteins 
bump into each other all the time” (Nooren and Thornton, 2003). Forming 
protein complexes may help increase structural stability; it is also a handy
way to regulate protein activity. An increase in the complexity of the or-
ganism is achieved by increasing the complexity of its parts (regulatory 
and structural), which, in turn, is done by combinatorially assembling pro-
teins into protein complexes. Because protein-protein interactions are di-
rectly involved in regulation of cellular processes, they are a central part of 
systems biology, whose approach is to bring together various types of data 
(sometimes contradictory) to get as complete and comprehensive a view of 
the biological system as possible. This understanding is often formalized in 
the network of interacting components within the cell; discovering inter-
acting partners of the proteins is therefore part of this scheme. 

Protein complexes can be transient or permanent, obligate (always exist-
ing in a complex) or non-obligate, homo- or hetero-oligomeric (Nooren 
and Thornton 2003). There are several ways to discover interacting part-
ners of the protein. The most reliable and informative method is to solve 
the crystal structure of the protein complex; this, however, will remain a 
minor contributor due to the complexity of the process. The majority of the 
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knowledge about protein-protein interactions (Table 2.5) will come from 
high throughput experimental approaches (such as yeast two-hybrid assay 
and mass spectrometry) and from theoretical prediction methods. 

Table 2.5. Examples of the databases containing information on protein-protein 
interactions 

Database Description 

GenomeWeb 

Contains links to protein interaction databases (currently 11 
sites are listed) 
http://www.hgmp.mrc.ac.uk/GenomeWeb/prot-interaction.html 

DIP 

Database of Interacting Proteins; contains experimentally de-
termined interacting proteins; curated human experts and auto-
mated methods. http://www. doe-mbi.ucla.edu 

BIND 

Biomolecular Interaction Network Database; documents mole-
cular interactions (proteins, DNA, RNA, ligands, etc). Informa-
tion comes from high throughput experiments as well as from 
hand-curated data. http://blueprint.org/bind 

InterDom 
A database of putative interactive protein domains; derived 
from multiple sources http://interdom.i2r.a-star.edu.sg 

SPIN-PP 

Surface Properties of Interfaces – Protein-Protein; database of 
all protein-protein interactions present in PDB 
http://honiglab.cpmc.columbia.edu/SPIN 

InterPreTS 

Interaction Prediction through tertiary structure(Aloy and Rus-
sell 2003). Pairs of sequences homologous to interacting pairs 
(from DBID) are evaluated for preserving atomic contacts at 
the interaction interface. http://russlee.embl.de/interprets 

Predictive methods use a combination of sequence conservation and 
structural analysis (Table 2.6). In multiple sequence alignments, where cer-
tain residues are conserved across the family, but different residue types 
are conserved within each subfamily, these are likely to be involved in in-
teractions. Each subfamily interacts with a different partner and has a 
somewhat different nature of contacts (Lichtarge et al., 1996). Another 
way to use sequence conservation is to correlate inter-protein mutations: 
this can point to the regions oftwo proteins involved in interactions (Pazos 
et al., 1997). Correlated mutations are particularly useful when structures 
of each of the proteins exist in the apo form. Interactions between proteins 
can also be indirectly inferred from phylogenetic profiles, gene fusion, and 
gene neighborhoods. If two proteins are both present or both missing from 
the genomes of different species, they are likely to be involved in func-
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tional interactions (Pellegrini et al., 1999). Species that are missing two in-
dividual genes may have them as a single fused gene, which can be found 
in whole genome comparison (Marcotte et al., 1999). The length of the 
branches and the structure of phylogenetic trees offer further help (Pazos 
and Valencia, 2001). Interacting genes frequently are positioned closely 
within the genome; thus, a correlation of gene positions within distantly re-
lated genomes may serve as an additional clue to their interaction 
(Overbeek et al., 1999). Finally, there are applications that predict protein-
protein binding surfaces based on sequence information (Zhou and Shan, 
2001). These applications are trained on the protein complexes where pre-
cise contacts in the protein-protein interaction are known; thus, they learn 
to identify the sequence signal in the patches that are involved in binding. 

Table 2.6. Computational approaches used for inferring protein-protein interac-
tions 

Computational approach References 

Family-depended conservation Casari et al. 1995, Lichtarge et al. 1996, and 
Pereira-Leal and Seabra 2001 

Correlated mutations Pazos et al. 1997 

Phylogenetic profiles Pellegrini et al. 1999, and Ragan and Gaast-
erland 1998 

Similarity of phylogenetic trees Pazos and Valencia 2001, and Goh et al. 
2000)

Conservation of gene neighbors Tamames et al. 1997, and Overbeek et al. 
1999

Gene Fusion Marcotte et al. 1999 

Protein-protein docking Halperin et al. 2002, and Smith and Stern-
berg 2002 

Prediction of binding surfaces Zhou and Shan 2001, Fariselli et al. 2002 

2.4.5 Protein-Ligand Interactions 

An essential goal of structural bioinformatics is to facilitate the discovery 
of new chemical entities. These can range from drugs and biological 
probes to biomaterials. These chemicals function by binding to a target, of-
ten a protein, DNA, or RNA, through non-covalent interactions. We call 
these chemicals ligands. 
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Until recently, most drugs inthe market came from the lead compounds 
that are discovered by screening of natural compounds; but now computa-
tional methods have begun to play a major role in drug discovery. The 
computational ligand design can be divided into two strategies: ligand-
based (analog-based) and target-based (structure-based) designs. These 
two strategies can be used individually or combined. 

The ligand-based design uses pharmacophore (Guener, 2000) and quan-
titative structure-activity relationships (QSAR) (Hansch et al., 1995) to 
identify or modify a lead in the absence of a known 3D structure of the 
target. The success of this type of design depends on known affinities and 
molecular properties of a set of active compounds, for which the chemical 
structures are available. 

The target-based design uses the 3D structure of the target molecule, de-
termined primarily by X-ray and NMR, or by structure prediction. A criti-
cal issue in structural-based design is conformational analysis. Of interest 
are the lowest energy conformations for a ligand when it is free in solution 
and when it is bound to the target. A variety of conformational search tools 
have been developed to obtain multiple low-energy conformations (Leach, 
1997). 

The site-directed ligand can be generated using two approaches: docking 
and building. Docking methods search existing databases for matches to an 
active site, while building seeks to generate new ligands by connecting at-
oms of molecular fragments specifically chosen for a receptor. The aim of 
docking is to optimize the feasible binding geometries of a putative ligand 
with a target of known 3D structure. The docking procedure characterizes 
the binding site, positions the ligand into this site, and evaluates the 
strength of interactions for a specific ligand-target complex. A variety of 
algorithms have been developed for docking (Kuntz et al., 1982; 
Katchalski-Katzir et al., 1992; Lawrence and Davis, 1992; Bohacek and 
McMartin, 1994; Vakser, 1995; Rayer et al., 1996, Welch et al., 1996; 
Ewing and Kuntz, 1997; Gabb et al., 1997; Morris et al., 1998; Sandak et 
al., 1998; Liu and Wang, 1999; and David et al., 2001). 

The development of computational methods has also made possible vir-
tual library design (Lauri and Barlett, 1994; Sun et al., 1998; and Leach 
and Hann, 2000). It is faster to make many compounds computationally 
than experimentally. Virtual screening is therefore used to experimentally 
prioritize efforts to make the best use of chemical and screening resources. 

With the advent of structural genomics, we rapidly gain knowledge of 
new protein structures. At the same time, the number of available ligands 
in both real and virtual libraries and the number of libraries are rapidly in-
creasing. It has become necessary to efficiently manage these structures in 
the ligand-design context for instance, by searching a particular ligand and 
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its potential targets and visualizing the protein-ligand interactions. An ex-
ample of a protein-ligand database is relibase (http://relibase.ccdc. 
cam.ac.uk/), which contains experimental PDB structures with ligands and 
structures where only the ligand-binding partners were modeled into the 
structure (Hendlich, 1998). An approach (Su et al., 2001) was developed to 
organize ligand databases into families. The new vesion of PDB includes 
ligand search capability, using SMILES strings (http://www.daylight.com/ 
smiles/) and visualization of the 2D structure of the ligand using MARVIN 
(http://www.chemaxon. com/marvin/) and an interactive viewer developed 
by us that specifically to examine 3D ligand interactions with its target and 
ordered H2O (Fig. 2.5). 

Fig. 2.5. This default view shows the binding site of a protein kinase complexed 
with MnATP and a peptide inhibitor (pdb id 1ATP). The ligands are shown in ball 
and stick. The backbones of the protein chains are shown as trace lines. The se-
quences are shown on the top in the sequence viewer, with residues highlighted in 
red that indicate the protein residues involved in a selected type of interaction. 
Only the protein residues involved in the selected interaction are displayed (in thin 
lines) in the structure viewer 
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2.5 Using Structural Bioinformatics Approaches in Drug 
Design 

In recent years, there has been successful drug design using a variety of 
computational approaches, from QSAR to computer-aided drug design 
(CADD) (Leach, 2001) and structure-based drug design. An example is the 
structure-based drug discovery of HIV protease inhibitors (Rutenber, 
1993). Structural bioinformatics bridges and builds on resources in bioin-
formatics, structural biology, and structure-based drug design. It can accel-
erate the quest of deriving a high-potency inhibitor from the chemical lead, 
while optimizing its physicochemical properties to maximize its chances 
for success as a drug (Fig. 2.6). 

(a) 

(b) 

Fig. 2.6. (a) shows the roles informatics plays in the postgenomic drug discovery. 
(b) shows the relationship between structural bioinformatics and other disciplines 
in drug discovery 
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Presently, most pharmaceutical drug discovery programs begin with a 
known macromolecule target, and seek to discover a small organic mole-
cule ligand that binds with high affinity and specificity. A genetic con-
struct that encodes the entire length of the protein is not necessarily the 
ideal target for screening or structural studies; the full length protein may 
contain domains that are not relevant to the studies being performed, and 
the protein may express poorly, be insoluble, or fail to crystallize. To avoid 
these problems, structural bioinformatics, in particular, computational do-
main detection combined with experimental domain assignments, can be 
used to design suitable constructs. These constructs can then be evaluated 
for their expression levels, solubility, activity, and ability to crystallize. 

The virtual screening and library design defines a group of lead candi-
dates. By using the hints from examining the structure of lead compounds 
bound to a target, scientists further synthesize more lead candidates. The 
process of optimizing a lead compound into a drug candidate is usually the 
longest and most expensive stage in the preclinical drug discovery process. 
Once discovered, a lead candidate must be modified in an iterative cycle 
(Fig. 2.7) in order to enhance its potency and selectivity. Following the se-
lection of the candidate molecule, scientists develop large-scale production 
methods and conduct preclinical animal safety tests. An invention of a new 
drug must pass three stage clinical trials, which can take years and cost 
hundreds of millions of dollars. 

Fig. 2.7. de novo drug design cycles. (based on Krumrine J.’s figure on pp445 in 
Chapter 9 of Structural Bioinformatics (Bourne and Weissig, 2003)) 
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Many drug discovery projects have failed simply because the binding 
pocket of the target did not have the required physicochemical properties 
for binding a small potent molecule. Thus, the initial analysis using struc-
tural bioinformatics approaches can provide a significant guide for the ul-
timate success of the target. With the advent of the genome era and the ex-
pected increase of available 3D protein structures from structural 
genomics, it is likely that in the near future most drug discovery programs 
will begin with structure-based approaches. 

2.6 The Future 

2.6.1 Integration over Multiple Resources 

As an emerging new field, structural bioinformatics has already started 
providing many resources and databases to a wide community of scientists. 
Most resources available today on the Web provide a good number of 
cross-links to other resources with relevant information. However, in our 
opinion, what is still lacking is an integrated view that provides complete 
coverage of structure information through a single entry point. Integrating 
over multiple resources is a challenging task; many efforts have been made 
in this area (Williams, 1997), and we expect significant improvement in 
the next decade with the use of new technologies like Web services. 

2.6.2 The Impact of Structural Genomics 

Structural gemomics (Bourne, 1999, and Burley et al., 1999) is an effort to 
employ high throughput structure determination for several purposes, in-
cluding the determination of as many protein structures as possible from a 
given genome, filling in protein fold space to facilitate comparative model-
ing, or the furthering of our understanding of basic biological functions. 

2.6.3 The Role of Structural Bioinformatics in Systems Biology 

The twenty-first century is a biology century. In order to understand sys-
tems biology, people carry out microarray experiments, comparing se-
quence similarities, and building biological networks. Currently, very few 
people exmine the role of structures when building these networks. Can 
structure be bypassed? Our somewhat biased answer is no: the devil is in 
the details, and structure often provides those details. Hence, in years to 
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come we expect to see an increasing role for structural bioinformatics in 
system biology. 
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3.1 Introduction 

The applications of computer technology in biology date as early as the 
1960s, progressing rapidly in the last decade and evolving into the emer-
gence of new field of bioinformatics. Bioinformatics combines the ele-
ments of biological sciences, biotechnology, computer science, and 
mathematics. Recent advances in biotechnology have enabled measure-
ment of biological systems on a massive scale. Newly developed methods 
and instrumentation, such as high throughput sequencing and automation 
in genomics and proteomics, generate volumes of raw biological data at an 
explosive rate. In parallel with the growth of data, numerous computa-
tional tools for improved data analysis and management have emerged. 
These tools help extract relevant parts of the data (data reduction), estab-
lish correlations between different views of data (correlation analysis), and 
convert the information to knowledge discoveries (data mining). In addi-
tion, recent research has expanded into data storage and data management 
focusing on structure of the databases (data modeling), storage media (re-
lational, flat file-based, XML, and others), and quality assurance of data. 
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The knowledge-based era of modern biological research seeks to combine 
data management systems with sophisticated data analysis tools, thus de-
fining some of the major current activities in bioinformatics. 

Molecular biology data management systems usually take the form of 
publicly accessible biological databases. A database is designed to manage 
a large amount of persistent, homogeneous, and structured data that is-
shared among distributed users and processes (Bressan, 2002). When a 
dataset is organized in the form of a database, it must remain manageable 
and usable, supporting both data growth and increase in the number of da-
tabase queries. In bioinformatics, the development of databases has been 
driven by an explosive growth of data as well as increasing user access to 
this data. For example, the number of entries in SWISS-Prot 
(www.expasy. org), a major public protein database and in DNA Data 
Bank of Japan (www.ddbj.nic.ac.jp), a major web accessible DNA data-
bank, has grown rapidly from 999 to 2003. The number of accesses to 
Swiss-Prot has grown by approximately one million added connections per 
year (Tables 3.1 and 3.2). 

Table 3.1. Number of monthly web access example 

SWISS-Prot 
release version 

Month/Year No. of entries No. of access in the 
month 

38.0 07/1999 80,000 2,040,437 
39.0 05/2000 86,593 3,162,154 
40.0 10/2001 101,602 5,642,523 
41.0 02/2003 122,564 8,018,544 
42.0 10/2003 135,850 9,510,337 

The number of entries in SWISS-Prot and the number of monthly web accesses to 
SWISS-Prot from 1999 to 2003. 

The growth of biological data resulted mainly from the large volume of 
nucleotide sequences generated from the genome sequencing projects. The 
first viral genome, bacteriophage FX-174, containing 5,386 base pairs 
(bps) was sequenced in 1978 (Sanger et al., 1978). More than a decade 
later, the first free-living organism, Haemophilus influenzae, containing 
1.8 million base pairs, was sequenced (Fleischmann et al., 1995). The hu-
man genome of some 3.5 billion bp was published in 2001 (Lander et al.
2001), followed by the publication of mouse genome a year later (Wa-
terston et al., 2002). Today, more than 1,500 viral genomes, 110 bacterial 
and archaea genomes and 20 eukaryotic genomes have been sequenced. 
Because of the alternative splicing of the messenger RNA (Fields, 2001) it 
is estimated that some 30,000 human genes encode as much as ten times 
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more proteins. Rapid accumulation of genomic sequences, followed by a 
mounting pool of protein sequences, and three-dimensional (3D) structures 
will continue to fuel the development of database technologies for manag-
ing these data. 

Table 3.2. Number of monthly web access example 

DDBJ release version Month/Year No. of entries 
38 07/1999 4,294,369 
41 04/2000 5,962,608 
47 10/2001 13,266,610 
53 03/2003 23,250,813 
56 12/2003 30,405,173 

The number of entries in DDBJ from 1999 to 2003. 

Numerous databases have been created to store and manage the nucleo-
tide sequences and related views of the same data, such as 3D biological 
macromolecular structures, protein sequences, physical maps, and struc-
tural or functional domains. Among the most significant DNA databases 
are DDBJ, GenBank (www.ncbi.nlm.nih.gov/Genbank), and EMBL 
(www.ebi.ac.uk/Databases). Major protein databases are Swiss-Prot, 
TrEMBL (www.ebi.ac.uk/trembl), PIR (pir.georgetown.edu/pirwww/pir 
home3.shtml), and Protein Data Bank (www.pdb.org). Each of these data-
bases usually provides a single specific view of the data. For example, 
PDB contains 3D biological macromolecular structures. However, re-
searchers typically utilize diverse information from multiple databases to 
support planning of experiments or analysis and interpretation of results. 
The common practice of manually accessing and compiling extracted data 
of dissimilar views can be very costly and time consuming. The concept of 
data warehousing, a convenient solution to managing different views of 
data and ensuring data interoperability, has been recently applied in bioin-
formatics. A biological data warehouse is a subject-oriented, integrated, 
non-volatile, expert interpreted collection of data in support of biological 
data analyses and knowledge discovery (Schönbach et al., 2000). This 
definition suggests that a data warehouse is organized around specific sub-
ject. The goal of constructing a data warehouse is to facilitate high-level 
analysis, summarization of information, and extraction of new knowledge 
hidden in the data. We refer to the databases that provide raw data for the 
data warehouse as data sources. 

In this chapter, we introduce the basic concepts of data warehousing and 
discuss the role of data warehousing for improved data analysis and data 
management. We present several case studies and discuss the lessons 
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learned. This chapter focuses on a) describing the nature of biological data 
and problems frequently encountered in managing them, b) transforming 
data into knowledge using data warehousing, c) data warehousing princi-
ples and the basic architecture of a biological data warehouse, and d) data 
quality. 

3.2 Bioinformatics Data 

Bioinformatics data consists of different views of biological information. 
Bioinformatics databases are diverse in their data formats, and are highly 
redundant. The bioinformatics data views include biological sequences 
(DNA, RNA, and proteins), gene or protein expression, functional proper-
ties, molecular interactions, clinical data, system descriptions, and related 
publications. The data appear as sequences, sequence annotations, struc-
tural models, physical maps, clinical records, interaction pathways, gene 
and protein expressions, protein-protein interactions, and other forms in 
data sources such as databases, private data collections, and related publi-
cations. The types of bioinformatics databases are summarized in the two 
major catalogues of molecular databases: the annual database issue of Nu-
cleic Acid Research (Baxevanis, 2003), and the DBCAT, a catalog of pub-
lic databases at Infobiogen (www.infobiogen.fr/services/dbcat). In August 
2003, NAR listed a total of 399 databases classified into 17 categories and 
DBCAT listed 511 databases classified into seven categories (Table 3.3). 

There is substantial diversity and variation in bioinformatics data, even 
among databases containing data of the same view (the same type of data). 
Each database has its own infrastructure and proprietary data format 
(common data standards and data exchange formats are not established in 
this field). For example, sequence entries are described in different formats 
in GenBank, Swiss-Prot, and EMBL. GenBank developed the ASN.1 (Ab-
stract Syntax Notation One) format while Swiss-Prot designed its own 
format. The Swiss-Prot data format differs slightly from that of the EMBL 
database. Recent introduction of XML (Extensible Markup Language) as 
the generic data exchange format has also given rise to several variants of 
the XML representations of bioinformatics data. In addition to ASN.1, 
GenBank uses the GBSeq XML (www.ncbi.nlm.nih.gov/IEB/ToolBox/ 
C_DOC/lxr/source/asn/gbseq.asn) format and enables the conversion of 
ASN.1 data to GBSeq XML. SwissProt has developed its own XML, 
known as SPTr-XML (www.ebi.ac.uk/swissprot/SP-ML/mapping-guide. 
html), and EMBL has developed the XEMBL (www.ebi.ac.uk/ xembl). 
The XML formats for other bioinformatics data include the Gene Expres-
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sion markup language GEML (www.rosettabio.com/tech/geml/ de-
fault.htm), MicroArray and Gene markup language MAGE-ML 
(www.mged.org/Workgroups/MAGE/mage.html), and CellML (www. 
cellml.org). Despite a variety of available data formats, a universal proto-
col for data exchange has not been established, contributing to the compli-
cation of bioinformatics data management. 

Table 3.3. Number of individual database  

NAR Number DBCAT Number 
Major Sequence Repositories 9 DNA 87 
Comparative Genomics 4  
Gene Expression 19  
Gene Identification and Structure 27  
Genetic and Physical Maps 12 Mapping 29
Genomic Databases 52 Genomics 58 
Intermolecular Interactions 7  
Metabolic Pathways/Cellular 
Regulation 

11

Mutation Databases 31  
Pathology 7   
Protein Databases 56 Protein 94 
Protein Sequence Motifs 20  
Proteome Resources 6  
RNA Sequences 26 RNA sequences 29 
Retrieval Systems and Database 
Structure 

3

Structure 34 Protein structure 18 
Transgenics 2   

Literature 43 
Varied Biomedical Content 20 Miscellaneous 153 
Total  399  511

Number of individual databases sorted by categories (as of September 2003) listed 
in the NAR and DBCAT catalogues. 

Bioinformatics data across diverse databases is often highly redundant. 
Because benchmarking and quality control mechanisms are rudimentary, 
an entry can exist in different forms in more than one database. To address 
the problem of redundancy in the nucleotide sequences, EMBL (www.ebi. 
ac.uk/embl), GenBank and DDBJ established the agreement for data redis-
tribution (Brunak et al., 2002). Any nucleotide sequence submitted to any 
of the three main repositories is redistributed to the others on a daily basis. 
Data structure and format differences are resolved by enforcing on a set of 
regulations on the three databases. In theory, this means that only one of 
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these three databases needs to be searched for RNA and DNA sequences. 
However, an analysis of scorpion toxins done by our group indicates a 
much more complex situation. A number of problems surfaced at the data 
preparation stage of version 1.0 of SCORPION, a fully referenced data-
base of scorpion toxins (Srinivasan et al., 2002). The entries compiled 
from the public databases GenBank, Swiss-Prot, EMBL, DDBJ, TrEMBL, 
and PDB were overlapping to various degrees (Table 3.4). From among 
the raw entries, we found 143 cases of replication (references to the same 
scorpion toxin) across two or more databases. Nearly half of the raw en-
tries were incomplete and required enrichment with additional structural 
and functional annotations. One third of the entries contained errors or dis-
crepancies (Table 3.5). To assure non-redundancy in our dataset, duplicate 
entries were deleted and redundant or partial entries were merged manu-
ally. Errors and discrepancies identified inside entries were corrected. 

Table 3.4. Scorpion toxin entries 

Databases Number of toxins  
GenBank, Swiss-Prot, EMBL, DDBJ, PDB 3 
GenBank, Swiss-Prot, EMBL, DDBJ, PIR 10 
GenBank, Swiss-Prot, EMBL, DDBJ 19
GenBank, Swiss-Prot, PIR, PDB 10 
GenBank, EMBL, DDBJ, TrEMBL 17
GenBank, Swiss-Prot, PIR 36 
GenBank, Swiss-Prot, PDB 5 
GenBank, EMBL, DDBJ 16
GenBank, Swiss-Prot  9
GenBank, PIR 6
GenBank, PDB 2
GenBank, TrEMBL 2
Swiss-Prot, PDB 8 
Total  143

Scorpion toxin entries replicated across multiple databases (from version 1.0 of 
the SCORPION database).  

The bioinformatics data is characterized by enormous diversity matched 
by high redundancy, across both individual and multiple databases. Ena-
bling interoperability of the data from different sources requires resolution 
of data disparity and transformation in the common form (data integra-
tion), and the removal of redundant data, errors, and discrepancies (data 
cleaning). Frequently encountered data redundancy issues are: (1) frag-
ments and partial entries of the same item (e.g. sequence) may be stored in 
several source records; (2) databases update and cross-reference one an-
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other with a negative side effect of occasionally creating duplicates, re-
dundant entries, and proliferating errors; (3) the same sequence may be 
submitted to more than one database without cross-referencing those re-
cords; and (4) the “owners” of the sequence record may submit a sequence 
more than once to the same database. To enable the extraction of knowl-
edge in a data warehousing environment, these are rectified by data ware-
house integration and data cleaning components. 

Table 3.5. Error and discrepancies 

Incomplete annotation Number of entries 
Value added information from journals 101
SwissProt links to PDB structure of poor homology 51 
Errors/ Discrepancies  
Toxin names from journals not used in databases 30
No link between databases 23 
Different sequence for the same toxin 15
Different names for the same sequence 11 
Wrong links between databases 1 

Errors and discrepancies in scorpion toxin entries (from version 1.0 of the 
SCORPION database). 

3.3 Transforming Data to Knowledge 

Transformation of data to knowledge, also known as knowledge discovery 
from databases (KDD), is a common goal for users of bioinformatics data-
bases. KDD is the “non-trivial extraction of implicit, previously unknown, 
and potential useful information from data” (Frawley et al., 1991). The 
need for KDD arises from recent progress in biotechnology that has en-
abled identification of the raw DNA or protein sequences in large numbers 
(hundreds, or even thousands) from a single experiment. But, the refined 
information, such as physicochemical properties, the classification of a 
group of sequences, their 3D structures, or their functional properties is-
derived from the analysis and experimentation at a much slower rate. In 
this scenario, a minority of the raw data is subject to further research while 
a large portion is not analyzed further and the explicit knowledge remains 
hidden. From our experience with two projects aimed at enabling KDD, 
we established that the data preparation step is the slowest component of 
the data-to-knowledge conversion. 

Figure 3.1 shows a knowledge discovery framework developed for the 
analysis of protein allergens (http://research.i2r.a-star.edu.sg/Templar/DB/ 
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Allergen). This system comprises a set of well-defined and classified en-
tries of allergens combined with bioinformatics tools for the prediction of 
allergenicity and the analysis of allergic cross-reactivity. If a new sequence 
has conserved regions having either sequence identity of six or more con-
secutive amino acids to any known allergens, or more than 35% identity 
over 80 or more amino acid regions, it represents a potential allergen. To 
construct the allergen discovery enabling database, we retrieved protein 
sequences distributed across multiple data sources, and further enriched 
the data by annotation from the literature. The annotated information was 
then cleaned for errors and discrepancies. In reality, the data preparation 
phase involves numerous steps of data conversions and data cleaning be-
fore the data is well organized and can be used for prediction or data min-
ing tasks. 

Fig. 3.1. A general KDD framework applied to the analysis of protein allergens 

Figure 3.2 shows a structure of a data warehouse containing multiple 
views to data. The Functional Immunology Database FIMM (Schönbach et 
al., 2001), a data retrieval and analysis tools for the study of Human Leu-
kocyte Antigen (HLA), provides a unique source of information for HLA-
peptide interactions, HLA structures and ligands, T-cell epitopes, antigens, 
diseases, and HLA-disease associations. It is a data warehouse that has 
been constructed manually to support functional immunology. Each FIMM 
data dimension refers to data of a given view, so the different views of data 
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that are integrated to FIMM include antigens, HLA, structures, peptides, 
diseases, and related references. Our experience in constructing FIMM is 
that it takes at least half a year of an expert annotator’s effort for data 
preparation, integration of various dimensions, value adding from journal 
sources, and linking the dimensions. 

Fig. 3.2. Data views of FIMM, internal links, and links to external sources (re-
search.i2r.a-star.edu.sg/fimm/information.html) 

Transforming heterogeneous raw data to a form suitable for extraction 
of hidden knowledge is the goal of the KDD. This transformation process 
is highly dependent on data preparation, integration, and cleaning, which 
can be done manually or semi-automatically. A data warehouse provides 
an environment of reusable data integration mechanisms and data cleaning 
support to manage and organize assorted sets of specialized data for differ-
ent data mining purposes. 
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3.4 Data Warehousing 

Data warehousing emerged in the business domain in the 1990s as a solu-
tion for the “warehousing of information” at the beginning of the informa-
tion explosion era. The steps involved in data warehousing processes are 
data integration, data cleaning (be discussed in the next section), and data 
analysis. A business-oriented data warehouse is a structured repository of a 
large volume of data integrated from different operational sources to sup-
port analytical processing (Inmon, 1996). For example, in business intelli-
gence (Almeida et al., 1999), sales and customer data distributed across the 
enterprise are integrated into a read-only analytical data warehouse. Pat-
terns such as the buying habits of customers are then mined from the data 
warehouse to formulate targeted marketing. In Decision Support System 
(DSS), a data warehouse generates detailed reports containing that are not 
relationships obvious to help users analyze a situation and make important 
business decisions. In bioinformatics, data warehousing is only emerging, 
but the effort can help biologists select and design critical experiments for 
their research. For biological applications, the task involves collecting data 
from various databases, resolving data record conflicts and, transforming 
data into a form usable for knowledge discovery. This process requires ef-
fective storage, integration, and organization of a large volume of data into 
a single, well-structured repository suitable for analytical processing. The 
maintenance of the database is a major issue, given the requirements for 
common schema, scalable database architecture, and mechanisms for up-
dating the data. These issues have already been addressed in business data 
warehousing, providing a guide for general data warehousing issues. Bio-
logical data warehousing, however, has specific requirements resulting 
from the nature of biological data and the systems that generate data. By 
combining general data warehousing principles with domain-specific re-
quirements, we can devise an efficient platform for data analysis using mo-
lecular biological data warehousing. This will contribute to more efficient 
knowledge discovery and support for biological research. 

Currently, the application of data warehousing principles to bioinfor-
matics data is not fully explored. The few examples of biological data 
warehouses are a gene expression data warehouse (Markowitz et al., 
2001), GIMS, a genomic data warehouse (Cornell et al., 2003), and TMID, 
a test bed implementation of view maintenance of protein sequences (Eng-
ström et al., 2003). These data warehouses share two features: 

1. Data extraction and integration from disparate sources, with alternative 
proposals for organizing the consolidated data. 
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2. Facilitation of data analysis, using one or more data mining techniques 
for the discovery of new knowledge (patterns, explanations, concepts, 
etc.) from the dataset. 

Data integration focuses on achieving interoperability of different views 
of the data, and several data integration solutions have been developed. 
Data analysis depends largely on the objectives of the data warehouse. The 
selection of data mining tools depends on the purpose of the data ware-
house. 

Fig. 3.3. The NCBI Entrez system and interface to a database collection 
(www.ncbi.nih.gov/Database). Some of the Entrez databases are not shown in this 
figure. The links show database connectivity. GenBank – nucleotide sequences; 
PubMed – publication abstracts; GenPept – protein sequences; OMIM – Mende-
lian inheritance and genetic disorders in humans; genomes – various genomes; 
taxonomy – names of organisms and taxonomic structure; domains – 3D structural 
domains; structure – 3D macromolecular structures, including proteins and 
polynucleotides; UniSTS – markers, or Sequence Tagged Sites (STS); SNP – sin-
gle nucleotide polymorphism database; PopSet – DNA sequences selected for evo-
lutionary studies; GEO – gene expression and hybridization array 
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Data integration systems for bioinformatics data adopt one of two ap-
proaches: virtual or materialized integration (Durand et al., 2003). Virtual 
integration systems (also known as federated databases) provide a software 
layer on top of multiple data sources that are independently maintained. 
The software layer is middleware that acts between the virtual warehouse 
and the data sources containing the physical data. Mediators, wrappers, or 
agents are used in the middleware, depending on the implementation strat-
egy, to query the sources and extract relevant data into consolidated re-
ports. The examples include DiscoveryLink (Haas et al., 2001), Kleisli 
(Chung et al., 1999), SRS (Zdobnov et al., 2002), Entrez (Wheeler et al., 
2003), and TAMBIS (Stevens et al., 2000). The Entrez retrieval system at 
NCBI facilitates access to and analysis of more than twenty interlinked da-
tabases, as can be seen in Fig. 3.3. Because queries submitted to the mid-
dleware are channeled to the federation of databases in real-time, the re-
sults are always up-to-date. However, the queries may fail when the 
databases are not available for access. The integration mechanisms are also 
vulnerable to communication latency at the data source servers. In addi-
tion, analysis the integrated data is limited to operations enabled by the 
searching interfaces provided by the databases. 

Materialized data integration solutions retrieve and extract data from the 
data sources into a centralized repository. Examples include EnsEMBL 
(Clamp et al., 2003) and GenoMax (www.informaxinc.com/content. 
cfm?pageid=19). Storing materialized data in a derived data repository 
provides flexibility in customizing analysis and queries, and in data ma-
nipulation. The data manipulation support tools are necessary for efficient 
enrichment of data with additional structural and functional annotation. 
These tools also facilitate data cleaning, part of which can be fully auto-
mated and part of which which requires human intervention. However, 
materialized data integration must take into consideration the amount of 
disk space needed to store the data. Some of the technologies that have 
been developed for integrating biological data have been summarized 
(Wong, 2002). 

3.5 Data Warehouse Architecture 

A bioinformatics data warehouse requires several components for opera-
tion: (1) retrieval of data from databases, (2) mechanism for cleaning data, 
(3) flexibility of manipulating the datasets, and (4) integrating and design-
ing purposeful analysis tools that can be used jointly or independently. A 
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conceptual map linking these components in a data warehouse is given in 
Fig. 3.4. 

The major components of a data warehouse provide for initial and in-
cremental data integration, data annotation, and data mining. Data integra-
tion also includes subcomponents for data retrieval, data cleaning, and data 
transformation. These components enable compilation of raw data from 
various databases. Data cleaning support tools are used for filtering of ir-
relevant and redundant records. To enable the interoperability of tools on 
the heterogeneous datasets and for ease of data management, the data is 
transformed into a common data format (records representing similar 
views) or interoperable formats (for records representing different views). 
Because information in databases is constantly updated, these steps of re-
trieving, cleaning, and transforming must be repeated for an incremental 
data integration process. 
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Fig. 3.4. Conceptual map of data warehousing process 

Once the initial dataset is created, the annotation component enables the 
addition of value-added information from experimental results or related 
publications to the dataset. Data cleaning is also supported at the annota-
tion stage, facilitating removal of erroneous data propagated from the data 
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sources. The analysis of data is enabled by incorporating general or spe-
cific data mining tools. The new knowledge extracted from these analyses 
is produced as an elaborate report. 

3.6 Data Quality 

Data quality is an essential aspect of databases. It generally refers to the 
“fitness” of the data in the databases. Data quality can be improved using 
data cleaning, the process of detecting and removing errors and discrepan-
cies. Bioinformatics databases are usually cleaned manually, or with the 
use of proprietary programs due to the complexity of errors in bioinformat-
ics data; we observed four sources of errors in bioinformatics datasets (de-
tails given in a later part of this section). 

Data quality can be assessed by measuring the agreements between data 
views presented by a system and the real-world entities (Orr, 1998). Ac-
cording to this definition, a genomic database with data quality of 100% 
would have completely presented all real-world genetic sequences, each of 
them represented exactly once as a complete entry. Attaining perfect data 
quality is impossible, but the developers of biological databases should 
strive for highest level of quality achievable. Quality data are crucial to the 
generation of accurate analytical results. Conversely, erroneous and noisy 
data may result in the extraction of inaccurate information and incorrect 
analytical results. 

Manual curation of the data is commonly used in many biological data-
bases to improve the quality of data originated from other public domain 
databases or directly submitted by individual researchers (Fredman et al., 
2002). Using data analysis and visualization tools, curators inspect and 
correct the data for consistency, accuracy, completeness, correctness, time-
liness, relevance, and uniqueness. The process of improving data quality, 
involving error correction, identification and removal of duplicates, and re-
structuring, is collectively known as data cleaning. Although curation at 
the database site helps eliminate a large proportion of raw data errors, a 
significant number of errors and inconsistencies still can be found in public 
databases. When using public databases for extraction of data, particularly 
for small datasets, individual users are advised to perform curation of their 
data to assure the quality of data and results. 

The use of a manual data cleaning process poses difficulties in sustain-
ing data quality as the number of sequences continues to grow exponen-
tially. Yet, an inspection of some of the discrepancies that can be found in 
biological data explains why data cleaning issues are too complicated to be 
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fully automated. For instance, a pair of protein sequences differing by a 
few amino acids can represent either variants/isoforms (or the result of an 
incorrect entry of the sequence) or sequencing errors. It is not easy to dif-
ferentiate between real variants and errors since functional annotations 
from submissions are not consistent. Curators need to cross-reference an-
notations to the publications in an attempt to standardize them and, if pos-
sible, to impose use of controlled vocabulary; but this is time consuming. 

The focus on data quality improvement is seldom emphasized in bio-
logical databases, but there have been attempts to automate internal data 
cleaning. For example, the now discontinued Genomic Sequence Database 
(GSDB) identified the need of improved data quality (Harger C et al., 
1998) and provided solutions for eliminating vector contamination errors 
contained in the sequences. They also suggested solutions for identifica-
tion of assemblies of discontinuous sequences. By removing erroneous se-
quences and organizing sets of sequence fragments into more meaningful 
groupings, they achieved better quality of data used for gene level studies 
and genomic comparison studies. 

Four sources of errors are observed in bioinformatics datasets: attribute, 
record, and single and multi-source levels. The attribute level errors in bio-
informatics databases are incorrect values of individual fields (such as “0.9 
gene” for gene name), misspellings, wrong abbreviations, or values placed 
in the wrong field (e.g., organism name inside the definition field). These 
errors occur most often because of the errors in the original data submis-
sion, or from automated systems for record processing. The record-level 
errors often result from conflicts between or misplacement of fields within 
a record. Examples include wrong accession or version numbers, features 
entered as comments, or non-functional links inside the database. Single-
source database level errors refer to conflicting or duplicate (redundant) 
entries within a single database. Examples include exact or fragmentary 
duplicates having identical content across separate records. The multi-
source database errors occur because of imperfect data integration and 
source synchronization problems (see the example in Table 3.4). The ma-
jority of data in current public databases lacks important functional and 
structural descriptions, although they may be available in the literature. At 
least five types of errors have been identified in the SCORPION databases 
(Table 3.5), plus numerous attribute level errors (data not shown). These 
results indicate high error rates in molecular databases. 

With increasing data mining and analytical projects that are dependent 
on the use of databases, data quality is becoming an important factor in as-
sessing their usability. A data warehouse contains data obtained from vari-
ous sources, so it is vulnerable to all four sources of errors.  
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3.7 Concluding Remarks 

Bioinformatics is a field where data grows at an exponential rate and 
knowledge grows only at linear rate. The ultimate challenge for the bio-
logical database community is to help close the gap between growth of 
data and knowledge. Recently developed KDD technologies address this 
issue. KDD depends to a large extent on the presence of a clean, up-to-
date, and well organized dataset. In reality, this requires tedious data clean-
ing and integration efforts due to the diversity and distribution of the bio-
logical data. Data warehousing emerges in bioinformatics to support bio-
logical knowledge discovery. 

Currently, not all data warehousing concepts have been applied to bioin-
formatics. For example, the dimensional data model, based on relational 
tables, is not widely seen in bioinformatics due to the complexity of the 
real data. Data warehousing has been historically developed using mainly 
relational databases systems, which are not as broadly used in bioinformat-
ics. 

The emergence of data warehousing in the business domain has resulted 
from the growth in size and complexity of business data, causing difficulty 
in the data management and analysis. Over the years, the data warehousing 
field evolved rapidly, and data warehousing concepts are now widely ap-
plied for business intelligence and for supporting important business deci-
sions. A similar trend is emerging in bioinformatics. The continuing data 
growth will lead to an increasing need for a large-scale data management 
and analysis system in the near future. Currently, database developments 
largely use a flat file format. Future developments are likely to emerge as 
scalable relational-based management systems (with data dimensions for 
proteins, DNA, structures, references, among others). Data warehousing 
principles have also been successfully applied in medical/clinical domains. 

The transfer of data warehousing experiences from other domains to 
bioinformatics is important for designing an organized environment for 
searching biological data (genes, proteins, and structures), manipulating 
subsets of the datasets and subjecting them to complex analyses. Substan-
tial efforts are required to achieve management of bioinformatics data at 
the warehouse level, but the speed up in the efficiency of discovery will 
justify such investments. 
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4.1 Introduction 

Biological data is exhaustively vast. Extracting any information from it is 
not an easy task. It is like mining a tiny bit of gold from the voluminous 
portion of ore taken from a gold mine. The word “mining” is taken from 
the mining industry, extracts precious metals from which ores. Data min-
ing in bioinformatics implies extracting valuable information from a large 
amount of incomprehensible, biological data. In other words, it is a process 
that leads to knowledge discovery. 

An intense effort worldwide by a large segment of the scientific com-
munity has focused an mining precious information from genetic data. 
Data mining in bioinformatics deals with different techniques and algo-
rithms to gain knowledge from data of biological sequences, structures and 
microarrays. 

In this chapter, we will discuss the analysis of biomedical, DNA, and 
protein data. A detailed discussion is made on the major databases, such as 
the nucleotide sequence database, the protein sequence database, and the 
gene expression database. In order to make use of the data from these 
databases, efficient software tools are needed to retrieve data, compare 
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biological sequences, discover patterns, and visualize the discovered 
knowledge. The most widely used tools are also covered. 

DNA is a very large molecule that contains amazingly complex 
information in the form of sequences and structures of amino acids. In 
order to extract such information, one has to understand the DNA 
sequences. After a brief discussion on the DNA sequences, the popular 
techniques and tools used to analyze the DNA sequence data are 
explained. 

Finally, we will have to encounter the product that is based on the 
information stored in DNA, known as protein. The protein is a relatively 
large molecule that contains a combination of around 20 amino acids. An 
understanding of the amino acid sequence will help us probe into problems 
or events for which the protein is responsible. The basics of the protein 
sequences are briefly discussed. The techniques, algorithms and the 
associated tools to analyze the protein data are explained in detail in this 
chapter in the light of the latest developments. 

Even though microarray forms an integral part of data-mining, this rela-
tively mature area needs a separate chapter. We will discuss analysis of 
microarray data in Chapter 12. 

4.2 Biomedical Data Analysis 

Recent advances in molecular biology and genomic research, such as high 
throughput sequencing methods and cDNA microarray technology, have 
generated an unprecedented amount of data. Efficient analysis of this data 
by computational methods is becoming a major challenge. Many algo-
rithms have been developed for classifying sequences, detecting weak 
similarities, separating protein coding regions from non-coding regions in 
DNA sequences, predicting protein structure and function, and reconstruct-
ing the underlying evolutionary history. 

Biomedical data can exist in many different forms. We are mainly con-
cerned with biomolecular data based on DNA sequence, protein sequence, 
and gene expression. A DNA sequence consists of four components, 
namely, adenine (A), cytosine (C), guanine (G) and thymine (T), specify-
ing the genetic code of the organism. A protein sequence consists of 20 
amino acids, coded from the coding region of a DNA sequence. Gene ex-
pression data measures the expression of a particular gene, whether up-
regulated, down-regulated, or non-expressing, under specific conditions in 
a cell. A major challenge in bioinformatics research is predicting the struc-
ture and function of biosequences by analysis of different biomolecular 
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data. The availability of comprehensive databases and powerful software 
tools has greatly facilitated research in these areas. 

4.2.1 Major Nucleotide Sequence Database, Protein Sequence 
Database, and Gene Expression Database 

To facilitate research and exchange of information in the fast evolving 
fields of genomics and bioinformatics, many public online databases have 
been created. These databases enable researchers to share their works or to 
access the works of others in the most up-to-date manner. In fact, com-
puter access is the only method of getting up-to-date nucleic acid and pro-
tein sequence information today. In addition, several journals that publish 
sequencing research nowadays require researchers to deposit their se-
quences electronically into one of the major databases prior to publication 
of their works. It is therefore important to be acquainted with the major da-
tabases. 

The three major DNA sequence databases that are in widespread use by 
the biological community are as follows: 

• EMBL (http://www.ebi.ac.uk/embl/index.html) (Kulikova et al., 2004): 
The EMBL database is maintained by the European Bioinformatics In-
stitute (EBI), an outstation of the European Molecular Biology Labora-
tory (EMBL) in Heidelberg, Germany, and is Europe’s primary collec-
tion of nucleotide sequences. The EMBL database is updated quarterly. 
The current release is EMBL Release 77 (based on the database frozen 
on 26 November 2003), which contains 30.4 million sequence entries 
comprising 36.0 billion nucleotides. 

• GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) (Benson et al., 
2003): The GenBank database is maintained by the National Center for 
Biotechnology Information (NCBI), a division of the National Library 
of Medicine (NLM), located on the campus of the US National Institutes 
of Health (NIH) in Bethesda, MD, USA. A new release is made every 
two months by GenBank, and the current release is Release 139 (based 
on the database frozen on 19 December 2003), which contains a similar 
number of sequence entry and nucleotide bases as EMBL. 

• DDBJ (http://www.ddbj.nig.ac.jp/Welcome-e.html) (Tateno et al., 2002 
and Miyazaki et al., 2003, 2004): The DDBJ database is maintained by 
the DNA Data Bank of Japan at the National Institute of Genetics (NIG) 
in Japan. A new release is made about every three months and the latest 
release in DDBJ is Release 56 (based on the database frozen on 26 No-
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vember 2003), which contains 30.4 million sequence entries comprising 
36.1 billion bases. 

The three databases have collaborated to form the International Nucleo-
tide Sequence Database Collaboration (http://www.ncbi.nlm.nih.gov/proj-
ects/collab/). Although the three databases have separate sites for data 
submission, they exchange data on a daily basis. So, apart from the varia-
tion in style and annotation format, the sequence information in these da-
tabases is virtually the same at any given time. An excellent description of 
the database formats and entries for these databases has been provided 
(Markel and Leon, 2003). 

The three major databases for protein sequence are: 

• Swiss-Prot (http://www.ebi.ac.uk/swissprot/index.html). The Swiss-Prot 
database, established in 1986, is considered to be the prime protein se-
quence database. It is maintained collaboratively by the Swiss Institute 
for Bioinformatics (SIB, http://www.isb-sib.ch/) and EBI. The current 
Swiss-Prot Release is version 42.10 (as of 16 February 2004), and con-
tains 144,731 sequence entries comprising 53.36 million amino acids. 
The protein sequences in SWISS-PROT are nonredundant, annotated, 
and cross-referenced to many other databases, and are continually up-
dated by a staff of scientists/curators. 

• TrEMBL (http://www.ebi.ac.uk/trembl/index.html). The TrEMBL data-
base, maintained by EBI, contains the translations of all coding se-
quences (CDS) present in the EMBL Nucleotide Sequence Database, 
that are not yet integrated into SWISS-PROT. TrEMBL is split into two 
main sections: SP-TrEMBL and REM-TrEMBL. SP-TrEMBL (Swiss-
Prot TrEMBL) contains the entries that should eventually be incorpo-
rated into Swiss-Prot and that can be considered as a preliminary section 
of Swiss-Prot, since all SP-TrEMBL entries have been assigned Swiss-
Prot accession numbers. REM-TrEMBL (REMaining TrEMBL) con-
tains the entries that are not to be included in Swiss-Prot. REM-
TrEMBL entries have no accession numbers. It includes immunoglobu-
lins and T-cell receptors, synthetic sequences, patent application se-
quences, small fragments, and coding sequence translations where there 
is strong evidence to believe that the proteins are not real. 

• PIR (http://pir.georgetown.edu/pirwww/). The Protein Information Re-
source (PIR), located at Georgetown University Medical Center, is an 
integrated public bioinformatics resource that supports genomic and 
proteomic research and scientific studies (Wu et al., 2003). It maintains 
several protein-related databases: (i) The PIR-PSD (PIR Protein Se-
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quence Database), which is an annotated protein database currently con-
taining over 283,366 sequences covering the entire taxonomic range 
(Release 78.03, 24 November 2003). The PIR-PSD database is nonre-
dundant and annotated, and the protein sequences in the database are 
classified into protein families, protein superfamilies, and homology 
domains. (ii) The iProClass database, an integrated resource that pro-
vides comprehensive family relationships and structural/functional fea-
tures of proteins (Wu et al., 2001). It currently consists of non-redundant 
PIR and SwissProt/TrEMBL proteins organized with more than 36,300 
PIR superfamilies, 145,300 families, 7,310 domains, 1,300 motifs, 280 
post-translational modification sites, and links to over 50 biological da-
tabases. The protein information in iProClass includes family relation-
ships at both global (superfamily/family) and local (domain, motif, and 
site) levels, as well as structural and functional classifications and fea-
tures of proteins. The iProclass current release is 2.41 (16 February 
2004) and contains 1.23 million entries. (iii) The PIR-NREF (PIR Non-
redundant REFerence protein database), which contains all sequences in 
PIR-PSD, SwissProt, TrEMBL, RefSeq, GenPept, and PDB. Identical 
sequences from the same source of organism (species) reported in dif-
ferent databases are presented as a single NREF entry with protein IDs 
and names from each underlying database, in addition to protein se-
quence, taxonomy, and composite bibliography. Related sequences 
identified by all-against-all FASTA search are listed for each NREF en-
try. The Web site provides direct entry retrieval (based on protein IDs), 
text search (based on protein or species names), and sequence search 
(based on BLAST, peptide match, and pattern match) for full-scale and 
species-based protein identification. Species-based browsing and 
searching are supported for about 100 organisms, including over 70 
complete genomes. The PIR-NREF current release is 1.41 (16 February 
2004) and contains 1.48 million entries. 

In October 2002, a collaboration was formed between EBI, SIB (Swiss 
Institute of Bioinformatics), and PIR produced a single worldwide data-
base of protein sequence and function called UniProt (http://pir.geo-
rgetown.edu/uniprot/) by unifying the Swiss-Prot, TrEMBL, and PIR data-
base activities. 

Recent advances in cDNA microarray technology have also generated a 
great amount of microarray gene expression data. To facilitate storing and 
sharing of such data, several public gene expression databases have been 
recently established: 
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• The ArrayExpress at the EBI (http://www.ebi.ac.uk/arrayexpress 
/index.html) is a public repository for microarray data, which is aimed at 
storing well annotated data in accordance with MGED recommenda-
tions. The Microarray Gene Expression Data (MGED) Society 
(http://www.mged.org/index.html) is an international organization of 
biologists, computer scientists, and data analysts that aims to facilitate 
the sharing of microarray data generated by functional genomics and 
proteomics experiments (Stoeckert et al., 2002; Ball et al., 2002; and 
Brazma et al., 2001). The current focus of MGED is on establishing 
standards for microarray data annotation and exchange, facilitating the 
creation of microarray databases and related software implementing 
these standards, and promoting the sharing of high quality, well anno-
tated data within the life sciences community. 

• The Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) at 
NCBI is a gene expression and hybridization array data repository, as 
well as a curated, online resource for gene expression data browsing, 
query, and retrieval. GEO was the first fully public high throughput 
gene expression data repository, and became operational in July 2000. 

Beside the major databases mentioned above, many research centers and 
institutes also put out Web sites that contain useful subsets of sequence 
data that are freely available to researchers. Special-purpose sets of se-
quences, such as transcription factor database, tumor gene database, re-
striction enzyme database, or even codon usage database, can be found in 
these Web sites (Williams, 1999 and Galperin, 2004). The major databases 
and these Web sites usually also include different data mining and analysis 
tools that can be used to analyze sequence data. A useful compilation of 
the various biological databases can be found in the special database issue 
(the first issue of each year) of the journal Nucleic Acids Research.

4.2.2 Software Tools for Bioinformatics Research 

Due to the vast amount of available data, computer retrieval and analysis 
of biomedical data is becoming more important than ever. Many software 
tools have been developed for this purpose. The software tools that facili-
tate research in bioinformatics can be broadly categorized into four classes: 
(1) data retrieval tools, (2) sequence comparison and alignment tools, (3) 
pattern discovery tools, and (4) visualization tools. 

A major tool for data retrieval is Entrez (Geer and Sayers, 2003). Entrez 
is a integrated data retrieval system developed by NCBI that provides inte-
grated access to a wide range of data domains, including literature, nucleo-
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tide and protein sequences, complete genomes, 3D structures, and more. 
One can use Entrez to: 

• Identify a representative, well annotated mRNA sequence record from 
the millions of sequences in the Entrez Nucleotide data domain.  

• Retrieve associated literature and protein records.  
• Identify conserved domains within the protein. 
• Identify known mutations within the gene or protein. 
• Find a resolved three-dimensional structure for the protein, or, in its ab-

sence, identify structures with homologous sequence. 
• View the genomic context of the gene and download the sequence re-

gion. 

Commonly used sequence comparison and alignment tools are BLAST 
(Basic Local Alignment Search Tool, available at http://www.ncbi.nlm. 
nih.gov/BLAST/) (Altschul et al., 1990, 1997) and FASTA (FAST Align-
ment, available at http://www.ebi.ac.uk/fasta33/) (Pearson and Lipman, 
1988 and Pearson 1990). BLAST is used for comparing gene and protein 
sequences against others in public databases. It now comes in several fla-
vors including PSI-BLAST, PHI-BLAST, and BLAST2. Specialized 
BLASTs are also available for human, microbial, malaria, and other ge-
nomes, as well as for vector contamination, immunoglobulins, and tenta-
tive human consensus sequences. FASTA can be used for a fast protein 
comparison or a fast nucleotide comparison. The program achieves a high 
level of sensitivity for similarity searching at high speed by performing op-
timized searches for local alignments using a substitution matrix. The high 
speed of this program is achieved by using the observed pattern of word 
hits to identify potential matches before attempting the more time consum-
ing optimized search. For multiple sequence alignment, the tool available 
is ClustalW (available at http://www.ebi.ac.uk/clustalw/) (Thompson et al., 
1994). ClustalW can be used to align DNA or protein sequences in order to 
elucidate their relationships as well as their evolutionary origin. 

Pattern discovery tools are used to search for patterns or features in the 
data. An important pattern discovery tool is cluster analysis. It is used to 
find groupings in a given dataset such that objects in the same group are 
similar to each other while objects in different groups are dissimilar. Clus-
ter analysis has been used extensively in gene expression data analysis (see 
http://rana.lbl.gov/EisenSoftware.htm). Another important application of 
pattern discovery tools is in sequence analysis. This class of tools uses ad-
vanced mathematical modeling and statistical inferences to find specific 
subsequences, functional sites, and structures, such as the prediction of 
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genes, exon/introns, splice sites, transcription factor binding sites, promot-
ers and 2/3D protein structure. Two useful integrated tools for pattern dis-
covery are Expression Profiler (http://ep.ebi.ac.uk/EP/) (Vilo et al., 2003), 
and GeneQuiz (available at http://jura.ebi.ac.uk:8765/ext-genequiz/) 
(Andrade et al., 1999 and Hoersch et al., 2000). Expression Profiler is a set 
of tools for clustering, analysis, and visualization of gene expression and 
other genomic data. Tools in the Expression Profiler allow the user to per-
form cluster analysis, pattern discovery, and pattern visualization, to study 
and search gene ontology categories, and generate sequence logos, and ex-
tract regulatory sequences, to study protein interactions, and to link analy-
sis results to external tools and databases. GeneQuiz is an integrated sys-
tem for large-scale biological sequence analysis using a variety of search 
and analysis methods and up-to-date protein and DNA databases. It con-
sists of four modules: (1) GQupdate (the database update), (2) GQsearch 
(the search system, which also includes many sequence analysis tools for 
functional analysis of protein sequence), (3) GQreason (the interpretation 
module), and (4) GQbrowse (the visualization and browsing system).  

Visualization tools allow an interactive, graphical display of genomic 
data. Most major genome analysis packages, such as Expression Profiler, 
and GeneQuiz, have a visualization tool integrated in them. Besides, many 
visualization software packages are also available freely on the Internet or 
by request from the authors. Some examples are as follows: 

• TreeView (available at http://rana.lbl.gov/EisenSoftware.htm), which 
provides a graphical display of clustering results and other analyses 
from the companion package Cluster, and supports tree-based and im-
age-based browsing of hierarchical trees.  

• BioViews (Helt et al., 1998), a Java-based genome browser applet 
which provides a three-level interconnected graphical view of genomic 
data: a physical map, an annotated sequence map, and a DNA sequence 
display.  

• Genes_Graph (Serov et al., 1998), a Java applet that enables visualiza-
tion of genetic network database in GeNet (Spirov and Samsonova, 
1997).  

• Protein Explorer (available at http://www.proteinexplorer.org) (Martz, 
2003), which provides 3D protein structure visualization in an interac-
tive manner. 

In summary, with the wealth of information generated by technological 
advancement in biosciences, some familiarity with the various biomedical 
databases and computer tools is a basic prerequisite and would allow a re-
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searcher to benefit from the efforts and contributions of many biologists 
and scientists. 

4.3 DNA Data Analysis 

4.3.1 DNA Sequence 

DNA is the basis of heredity (Alberts et al., 1989). It is a polymer made up 
of small molecules called nucleotides, which can be distinguished by the 
four bases: adenine (A), cytosine (C), guanine (G), and thymine (T). A 
DNA sequence is therefore specified completely by a sequence consisting 
of the four alphabets A, C, G, and T. DNA usually occurs in double 
strands, and the bases in the two strands are complementary to each other, 
i.e., A pairing with T and G pairing with C with hydrogen bonds. For ex-
ample, a single strand of DNA (written in the 5 to 3 direction): 5 
AACCGTACC 3 is paired to a complementary strand running in the oppo-
site direction: 

5 A A C C G T A C C  3 
 |   |   |   |   |   |   |   |   | 

3 T T G G C A T G G  5 

The double-stranded DNA forms a helical structure in space and we 
have the well known double helix (see Fig. 4.1). The pairing mechanism 
allows one strand of DNA to serve as template for producing the reverse 
complement strand, thus explaining how DNA can duplicate. 

The DNA of an organism is determined by a process called sequencing. 
DNA sequencing involves the process of determining the exact order of 
the four nucleotides A, C, G, and T that make up the DNA sequence. A 
standard method for sequencing is based on separating DNA fragments by 
gel electrophoresis (Sanger et al., 1977). However, the method is ex-
tremely labor-intensive and expensive, which prevents its use in large-
scale sequencing applications. Capillary electrophoresis (Dovichi and 
Zhang, 2001) is rapidly becoming the method of choice in large sequenc-
ing centers nowadays. The sequencing process generates a set of four 
traces of signal intensities corresponding to each of the four nucleotide 
bases. The actual sequence of nucleotides is then determined from the 
traces by a process called basecalling. A widely used noncommercial soft-
ware package for basecalling is Phred, which is available from 
http://www.phrap.org/. 
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Fig. 4.1. The double helix of DNA sequence with a gene in the sequence delim-
ited. Genes are specific sequences of bases that encode instructions on how to 
make proteins. (Courtesy of U. S. Department of Energy Human Genome Pro-
gram, http://www.ornl.gov/hgmis) 

DNA carries the genetic information required by an organism to func-
tion. The flow of information within a cell is summarized by the Central 
Dogma of Molecular Biology, as can be seen schematically in Fig. 4.2. 

Fig. 4.2. Flow of information within a cell 

An intermediate step from DNA to protein synthesis in Fig. 4.2 is called 
transcription. Transcription copies information in the DNA into copies 
called RNA. If a segment in the DNA sequence encodes a protein (i.e., 
corresponds to a coding region in the DNA sequence), the RNA is called 
messenger, or mRNA. However, the end products of some genes are sim-
ply RNA copies, not protein. Typically, these are transfer RNAs (tRNAs) 
and ribosomal RNAs (rRNAs), which are components of the translation 
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apparatus. In transcription, the DNA nucleotides A, C, G, and T are re-
spectively transcribed into RNA nucleotides U (uracil, U, replaces 
thymine, T, in RNA molecules), G, C, and A. 

Transcription involves a three steps process: (1) INITIATION, where 
the enzyme called RNA polymerase binds to specific sequences upstream, 
such as a promoter, i.e., a TATA box, in a DNA sequence; (2) 
ELONGATION, where nucleotides U, G, C, and A are joined together in 
the 5 to 3 direction; and (3) TERMINATION, where the RNA polymerase 
reaches terminator sequences in the DNA and falls off, and transcription 
ceases. During transcription, the strands of the double helix DNA are first 
separated by breaking the hydrogen bonds between the base pairs. One 
strand of the DNA is then used as a template to make a single strand of 
RNA, which grows in the 5 to 3 direction. 

Table 4.1. Twenty amino acids and their abbreviations. 

AMINO ACID ABBREVIATION 

Alanine Ala (A) 
Arginine Arg (R) 

aspartic acid Asp (D) 
Asparginine Asn (N) 
Cystenine Cys (C) 

glutamic acid Glu (E) 
Glutamine Gln (Q) 

Glycine Gly (G) 
Histine His (H) 

Isoleucine Ile (I)
Leucine Leu (L) 
Lysine Lys (K) 

Methionine Met (M) 
phenylalanine Phe (F) 

Praline Pro (P) 
Serine Ser (S) 

Threonine Thr (T) 
Tryptophan Trp (W) 

Tyrosine Tyr (Y) 
Valine Val (V) 

The transcription process is different in prokaryotes (i.e., simple bacte-
ria) and eukaryotes (non-bacteria possessing a nucleus, e.g., fungi, unicel-
lular paramecia, and all plants and animals). In prokaryotes, RNA poly-
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merase produces an mRNA transcript directly from the DNA template. In 
eukaryotes, genes in a DNA sequence are not continuous, but instead are 
broken up into coding regions (exons, which code for proteins) and non-
coding regions (introns). The RNA is transcribed in the nucleus and then 
undergoes posttranscriptional modification (i.e., pre-mRNA splicing), 
where the introns are spliced and the remaining exons are joined to form 
the final mRNA, which is used for protein synthesis during translation. 

Table 4.2. The genetic code 

 U C A G  

 Phe Ser Tyr Cys U 
 Phe Ser Tyr Cys C 

U Leu Ser Stop Stop A 
 Leu Ser Stop Trp G 
      
 Leu Pro His Arg U 
 Leu Pro His Arg C 

C Leu Pro Gln Arg A 
 Leu Pro Gln Arg G 
      
 Ile Thr Asn Ser U 
 Ile Thr Asn Ser C 

A Ile Thr Lys Arg A 
 Met Thr Lys Arg G 
      
 Val Ala Asp Gly U 
 Val Ala Asp Gly C 

G Val Ala Glu Gly A 
 Val Ala Glu Gly G 

Thus, embedded within the DNA sequence are specific subsequences 
that control the initiation or termination of transcription. These sub-
sequences, such as promoters, enhancers, silencers, and terminators, are 
regulators of gene expression. Other sequences of interest within a (eu-
karyotes) DNA sequence are coding regions (exons), non-coding regions 
(introns and intergenic regions), splice signals or splice sites, and the loca-
tion of the open reading frames (ORFs). An active area of research in ge-
nomics and bioinformatics is the identification of these controlling ele-
ments or segments in a given DNA sequence, for applications such as gene 
prediction. 
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The final step of information flow shown in the schematic of Fig. 4.2 is 
the translation process. The information encoded in the mRNA is used to 
specify the precise ordering of the amino acids, which form proteins. Pro-
teins are composed of 20 different amino acids (see Table 4.1 for the list of 
amino acids and their abbreviations). Since the DNA sequence dictates the 
eventual amino acid sequence, each of the 20 amino acids needs a mini-
mum of three nucleotide bases to encode. With a triplet of contiguous nu-
cleotides along the DNA or RNA chain coding one amino acid, there are 43

= 64 combinations. The genetic code is now known to be a triplet, comma-
free code, where successive codons consisting of three successive RNA 
nucleotides encode one of the 20 amino acids or the signal to stop transla-
tion. Since there are 64 combinations, there is redundancy in the coding 
scheme. Table 4.2 lists the genetic code for the 20 amino acids. We see 
that the same amino acid can be encoded by several different codons that 
are synonyms. For example, the amino acid leucine (Leu) is encoded by 
six different codons. There are three codons, UAA, UAG, and UGA, that 
do not encode any amino acids. They are the stop codons that terminate the 
translation process. 

5  ATGCCCAAGCTGAATAGCGTAGAGGGGTTTTCATCATTTGAGGACGATGTATAA  3 
----------------------------------------------------------------------------------------------------------------------- 

1) ATG CCC AAG CTG AAT AGC GTA GAG GGG TTT TCA TCA TTT GAG GAC GAT 
GTA TAA 
Amino acids: M P K L N S V E G F S S F E D D V * 

2) TGC CCA AGC TGA ATA GCG TAG AGG GGT TTT CAT CAT TTG AGG ACG ATG 
TAT 
Amino acids: C P S * I A * R G F H H L R T M Y 

3) GCC CAA GCT GAA TAG CGT AGA GGG GTT TTC ATC ATT TGA GGA CGA TGT 
ATA 
Amino acids: A Q A E * R R G V F I I * G R C I 

Fig. 4.3. The three possible reading frames of a DNA sequence in the forward di-
rection. The longest open reading frame is in frame 1 

Since codons of three nucleotides determine which amino acid will be 
added next in the growing protein chain, it is important then to decide with 
which nucleotide to start translation, and when to stop. This is called an 
open reading frame (ORF). Once a gene has been sequenced, it is impor-
tant to determine the correct open reading frame. Every region of DNA has 
six possible reading frames, three in each direction. The reading frame that 
is used determines which amino acids would be encoded by a gene. Typi-
cally only one reading frame is used in translating a gene (in eukaryotes), 
and this is often the longest open reading frame. Once the open reading 
frame is known, the DNA sequence can be translated into its correspond-
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ing amino acid sequence. An open reading frame starts with an ATG (Met) 
in most species and ends with a stop codon (TAA, TAG, or TGA). For ex-
ample, the sequence of DNA in Fig. 4.3 can be read in six reading 
frames, three in the forward direction and three in the reverse. The three 
reading frames in the forward direction are shown with the translated 
amino acids below each DNA sequence. Frame 1 start with the “A”, Frame 
2 with the “T” and Frame 3 with the “G”. Stop codons are indicated by an 
“*” in the protein sequence. The longest ORF is in Frame 1. Determination 
of the correct reading frame is an important problem in genomics and bio-
informatics. 

4.3.2 DNA Data Analysis 

Sequence Comparison and Alignment 

After a new DNA sequence is obtained, the next step is to study the func-
tional and structural information encoded in the sequence. One way to do 
this is by comparing the new sequence with sequences that have already 
being well studied and annotated. Sequences that are similar would proba-
bly have the same function, be it a functional role (i.e., ORFs coding for 
similar proteins), regulatory role (i.e., similar regulatory or biochemical 
pathways), or structural properties in the case of proteins. Additionally, if 
two sequences from different organisms are similar, there may be a com-
mon ancestor sequence, and the sequences are then said to be homologous. 
Relationship between homologous sequences has important implications in 
speciation study and phylogenetic analysis. 

One method for sequence comparison is sequence alignment. Sequence 
alignment is the procedure of comparing two (pairwise alignment) or more 
(multiple sequence alignment) sequences by searching for a series of indi-
vidual characters or character patterns that are in the same order in the se-
quences. For base-by-base comparison of two sequences, a rigorous 
alignment of the two sequences using string matching techniques is 
needed. 

The standard pairwise alignment method is based on dynamic pro-
gramming (Needleman and Wunsch, 1970, and Smith and Waterman, 
1981a, b). The method compares every pairs of characters in the two se-
quences and generates an alignment and a score, which is dependent on the 
scoring scheme used (i.e., a scoring matrix for the different base-pair com-
binations, match and mismatch scores, and a scheme for insertion/deletion, 
gap, penalties). This alignment will include matched and mismatched 
characters and gaps in the two sequences that are positioned, so that the 
number of matches between identical characters is the maximum possible. 
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Sequence alignment can be either global (Needleman and Wunsch, 
1970) or local (Smith and Waterman, 1981a, b). Global alignment tries to 
align the entire sequence in such a way as to maximize the degree of simi-
larity between the two sequences. However, for most DNA sequence com-
parisons, one is usually more interested in finding conserved patterns or 
segments in two sequences by local alignment. In local alignment, the 
alignment stops at the ends of regions of strong similarity, and a much 
higher priority is given to finding these local regions than to extending the 
alignment to include more neighboring pairs. The Smith-Waterman algo-
rithm finds a pair of segments, one from each of two long sequences, such 
that there is no other pair of segments with greater similarity. Both the 
Needleman-Wunsch algorithm and the Smith-Waterman algorithm for se-
quence alignment is available freely on EMBOSS (European Molecular 
Biology Open Software Suite, http://www.uk.embnet.org/Softwares/EM-
BOSS/) in programs called needle and water, respectively. 

Although dynamic programming for sequence alignment is an efficient 
mathematical technique for optimum alignment, it is still too slow for 
comparing large numbers of bases. Typical DNA database today contains 
billions of bases, and the number is increasing rapidly. To allow sequence 
search and comparison to be performed at a reasonable time, fast heuristic 
local alignment algorithms have been developed. Although the resulting 
alignment is not guaranteed to be optimal anymore, the advantage of tre-
mendous speed of the algorithms seems to far outweigh their potential 
shortcomings in optimality or sensitivity. 

The most widely used heuristic database search tool is BLAST (Basic 
Local Alignment Search Tool) (Altschul et al., 1990, 1997), which runs 
one to two orders of magnitude faster than the Smith-Waterman algorithm. 
It has become the standard for sequence alignment and database searching. 
BLAST is freely available in many websites around the world, such as 
NCBI (National Center for Biotechnology Information, http://www.ncbi. 
nlm.nih.gov/BLAST) and the EBI (European Bioinformatics Institute, 
http://www.ebi.ad.uk/blastall). Many variants of BLAST have been devel-
oped to search for different type of databases and for different applications. 
For example, the NCBI website offers different types of BLAST database 
search that allow a user to search for protein sequence, DNA/RNA se-
quence, entire genome search, etc. 

Sometimes it is necessary to align more than two sequences. Although 
the basic dynamic programming algorithm can be extended to multiple se-
quences to find optimum alignment, the complexity quickly gets out of 
hand to make the method impractical. Just three sequences of 1,000 bases 
each would require 1,0003 = 1×109 comparisons, compared to 1,0002 = 
1×106 comparisons for two sequence alignment. A way to handle multiple 
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sequence alignment is to break down the problem into a series of pairwise 
matches which are then combined progressively in some way to obtain the 
final alignment. This is the technique used in ClustalW (Thompson et al., 
1994, 1997) (available at http://www.ebi.ac.uk/clustalw/). Other algo-
rithms for multiple sequence alignment are SAGA (Sequence Alignment 
by Genetic Algorithm, Notredame and Higgins, 1996, and Notredame and 
Higgins, 1996), MSASA (Multiple Sequence Alignment by Simulated An-
nealing, Kim et al., 1994), Hidden Markov Model-based methods such as 
SAM (Sequence Alignment and, Modeling software system, available at 
http://www.cse.ucsd.edu/research/compbio/sam.html, Hughey and Krogh 
1996), and HMMER (http://hmmer.wustl.edu/, Eddy, 1998). 

Fig. 4.4. Dot plot of two coding DNA sequences: the alpha chain of human hemo-
globin is assigned to the horizontal axis and the beta chain of human hemoglobin 
is assigned to the vertical axis 



4 Data Mining for Bioinformatics     79 

Table 4.3. DNA sequences of the first exons of beta-globin genes for eight differ-
ent species. 

A Human beta-globin 92 Bases 

ATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGC
AAGGTGAACGTGGATTAAGTTGGTGGTGAGGCCCTGGGCAG 

B Goat alanine beta-globin 86 Bases 

ATGCTGACTGCTGAGGAGAAGGCTGCCGTCACCGGCTTCTGGGGCAAGGTG
AAAGTGGATGAAGTTGGTGCTGAGGCCCTGGGCAG 

C Opossum beta-hemoglobin beta-M-gene 92 Bases 

ATGGTGCACTTGACTTCTGAGGAGAAGAACTGCATCACTACCATCTGGTCTA
AGGTGCAGGTTGACCAGACTGGTGGTGAGGCCCTTGGCAG 

D Gallus gallus beta-globin 92 Bases 

ATGGTGCACTGGACTGCTGAGGAGAAGCAGCTCATCACCGGCCTCTGGGGC
AAGGTCAATGTGGCCGAATGTGGGGCCGAAGCCCTGGCCAG 

E Lemur beta-globin 92 Bases 

ATGACTTTGCTGAGTGCTGAGGAGAATGCTCATGTCACCTCTCTGTGGGGCA
AGGTGGATGTAGAGAAAGTTGGTGGCGAGGCCTTGGGCAG 

F Mouse beta-a-globin 94 Bases 

ATGGTTGCACCTGACTGATGCTGAGAAGTCTGCTGTCTCTTGCCTGTGGGCA
AAGGTGAACCCCGATGAAGTTGGTGGTGAGGCCCTGGGCAGG 

G Rabbit beta-globin 90 Bases 

ATGGTGCATCTGTCCAGTGAGGAGAAGTCTGCGGTCACTGCCCTGTGGGGC
AAGGTGAATGTGGAAGAAGTTGGTGGTGAGGCCCTGGGC 

H Rat beta-globin 92 Bases 

ATGGTGCACCTAACTGATGCTGAGAAGGCTACTGTTAGTGGCCTGTGGGGA
AAGGTGAACCCTGATAATGTTGGCGCTGAGGCCCTGGGCAG 

When two sequences are to be compared qualitatively, the easiest way 
to see whether there are potential regions of similarity is probably by a 
graphical display called dot matrix plots (Gibbs and McIntyre, 1970, and-
States and Boguski, 1991). A dot matrix plot program called Dotter is 
available at http://www.cgb.ki.se/cgb/groups/sonnhammer/Dotter.html. 
Simple as it is, the dot matrix plot is still a popular tool for researchers to 
visually inspect the similarity between two sequences, and most sequence 
analysis packages will have one or more programs to produce these plots. 
In a dot matrix plot, one sequence is plotted on each axis, and a dot is 
drawn where the two sequences “match”. The general rule for dot matrix 
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plots is to examine the characters one by one, starting from the first char-
acter in the sequence on the vertical axis, and place a dot at locations in the 
row in the other sequence where the same character is found. Any region 
of similar sequence is revealed by a diagonal row of dots. Isolated dots 
represent random matches that are probably not related to any significant 
alignment. 

Fig. 4.5. The AC DB-Curve of the DNA sequences of the first exons of beta-
globin genes for eight different species shown in Table 4.3 

For a DNA sequence with only four alphabets, the above rule would put 
dots in about 25% of the possible places and fill the plot so that any real 
matches become impossible to see. Detection of matching regions may be 
improved by filtering out random matches in the dot matrix plot. Instead of 
comparing single characters, a window is used to compare a group of char-
acters in both sequences (Maizel and Lenk, 1981). A dot is drawn in the 
plot if a certain minimal number of matches occur in the window. Figure 
4.4 shows an example of a dot plot (produced with Dotter), comparing the 
alpha chain of human hemoglobin to the beta chain of human hemoglobin 
with a window length of 31. Matches and mismatches were assigned simi-
larity values of +5 and -4, respectively, and the gray values of the dots 
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scale with the similarity of two windows. One can clearly discern a diago-
nal trace along the entire length of the two sequences. 

For relatively short sequences, sequence comparison can also be done 
visually by sequence visualization techniques. One such 2D visualization 
technique is the DB-Curve (Dual-Base Curve) (Wu et al., 2003a). In DB-
curve DNA sequence visualization, two out of the four bases are consid-
ered at a time. The two bases are assigned +45° and –45° vectors, respec-
tively, whereas the remaining bases are assigned +90° vectors. Starting at 
the origin, a DNA sequence can be mapped to a 2D curve by a cumulative 
plot of the bases in the sequence using the assigned vectors. Figure 4.5 
shows the AC DB-Curve of the DNA sequences of the first exons of beta-
globin genes for the eight different species shown in Table 4.3. Similarities 
and differences in the sequences can be readily observed from the plots. 

Gene Prediction 

Gene prediction has been an area of active research in bioinformatics 
(Mathe et al., 2002). Gene prediction requires the integration of many dif-
ferent signals such as promoter regions, translation start and stop codons, 
reading frame periodicities, polyadenylation (polyA) signals, and, for eu-
karyotes, intron splicing signals, base compositional bias between codon 
positions for exons and introns, and various coding statistics. Many of 
these signals and statistics are related to each other, and are often comple-
mentary in the sense that some may be weak when others are strong. 
Therefore, a combination of these signals is often employed in most exist-
ing gene prediction algorithms. 

In prokaryotes, gene finding is made simpler by the fact that coding re-
gions are not interrupted by intervening sequences such as introns. Still, 
for short open reading frames, it is highly nontrivial to distinguish between 
sequences that represent true genes and those that do not. A eukaryotic 
gene typically consists of exons interrupted by non-coding regions, such as 
introns or intergenic regions. Prediction of a eukaryotic gene is therefore a 
much more difficult problem. 

In general, three approaches of gene prediction can be distinguished: 
similarity-based, content-based, and site-based. Similarity-based methods 
make use of already determined sequences by a comparison of sequence 
data. Content-based methods determine the overall properties of a se-
quence in terms of the various coding statistics. Site-based methods deter-
mine transcription factor binding sites, polyA signals, start and stop 
codons, splice junctions, and other specific subsequences or sequence pat-
terns. 
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Since it is reasonable to assume that similar sequences would have simi-
lar biological and functional roles, the availability of a vast number of se-
quences in various databases means that similar sequences with the genes 
annotated in them could be used to annotate new uncharacterized se-
quences. Thus, a first step in gene finding would be to perform a database 
search using search tool like BLAST. The probable gene candidates ob-
tained from the search could then be subjected to more sophisticated 
analysis, either algorithmic or experimental, to further validate the find-
ings. The use of available site knowledge from already annotated se-
quences often results in substantial reduction in effort. 

A sequence can also be analyzed for regions of high coding potential by 
an examination of various coding statistics. Such an approach has the ad-
vantage that no similar sequence is needed, as the information to predict 
the protein coding genes in the sequence is mined from the sequence itself. 
Of course, the sensitivity and accuracy of the prediction depends on the 
statistics used. Finding powerful coding statistics is still an area of active 
research in bioinformatics. 

A coding statistic describes the likelihood that a DNA sequence is cod-
ing for a protein. Many such statistics have been proposed by various re-
searchers. Some of these coding statistics are codon usage bias, base com-
positional bias between codon positions, and periodicity in base 
occurrence. Several excellent reviews of such statistics and algorithms are 
available (Fickett and Tung, 1992; Fickett, 1996; Burset and Guigo, 1996; 
and Guigo, 1999). The coding statistics can be furher divided into two 
classes (Guigo, 1999): model dependent and model independent. Model 
dependent statistics require a representative sample of coding DNA from 
the species under consideration to estimate the parameters of the model. 
For example, the codon usage table for homo sapiens (see Table 4.4 be-
low) shows the relative frequency of usage of each codon in human coding 
regions versus the relative frequency of each codon among synonymous 
codons. Significant, non-random differences in codon usage frequency 
have been observed in the table. Thus, regions in which codons are used 
with frequencies similar to the typical species codon frequencies are likely 
to code for protein (Staden and McLachlan, 1982, and Staden, 1990). The 
bias in codon usage could also be used to identify the correct reading 
frame for an uncharacterized sequence. 

Recognition of coding regions or ORFs in the human genome based on 
coding statistics is a difficult problem due to the short exon length, where 
the average length of exons of the vertebrate gene is only 137 bp (Haw-
kins, 1988). While good recognition rates can be achieved in the recogni-
tion of coding and non-coding regions in the yeast genome (Zhang and 
Wang, 2000), the strengths of the statistical features alone are generally 
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not sufficient to identify human exons due to their limited average length. 
The use of splicing signals, such as stop codons, together with the coding 
statistics results in better prediction power (Thanaraj, 2000). 

Table 4.4. The relative frequency of codon usage in homo sapiens (from 
http://www.kazusa.or.jp/codon/, where the statistics are computed from the Gen-
Bank Release 139 database). 

Amino acid Codon Freq per 1000 Fraction 
Gly 
Gly 
Gly 
Gly 

Glu 
Glu 
Asp 
Asp 

Val 
Val 
Val 

 Val  

Ala 
Ala 
Ala 
Ala 

Arg 
Arg 
Ser 
Ser 

Lys 
Lys 
Asn 
Asn 

Met 
Ile 
Ile 
Ile 

Thr 
Thr 

GGG
GGA
GGT 
GGC 

GAG
GAA
GAT 
GAC 

GTG 
GTA 
GTT 
GTC 

GCG 
GCA 
GCT 
GCC 

AGG
AGA
AGT 
AGC 

AAG
AAA
AAT 
AAC 

ATG 
ATA 
ATT 
ATC 

ACG 
ACA 

16.49 
16.41 
10.81 
22.52 

39.99 
29.04 
22.03 
25.52 

28.53 
7.06 
10.97 
14.60 

7.53 
16.04 
18.62 
28.27 

11.69 
11.72 
12.11 
19.47 

32.18 
24.04 
16.74 
19.18 

22.19 
7.26 
15.78 
21.02 

6.15 
14.96 

0.25 
0.25 
0.16 
0.34 

0.58 
0.42 
0.46 
0.54 

0.47 
0.12 
0.18 
0.24 

0.11 
0.23 
0.26 
0.40 

0.21 
0.21 
0.15 
0.24 

0.57 
0.43 
0.47 
0.53 

1.00 
0.16 
0.36 
0.48 

0.12 
0.28 
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Thr 
Thr 

Trp 
End 
Cys 
Cys 

End 
End 
Tyr 
Tyr 

Leu 
Leu 
Phe 
Phe 

Ser 
Ser 
Ser 
Ser 

Arg 
Arg 
Arg 
Arg 

Gln 
Gln 
His 
His 

Leu 
Leu 
Leu 
Leu 

Pro 
Pro 
Pro 
Pro 

ACT 
ACC 

TGG 
TGA 
TGT 
TGC 

TAG 
TAA 
TAT 
TAC 

TTG 
TTA 
TTT 
TTC 

TCG 
TCA 
TCT 
TCC 

CGG 
CGA 
CGT 
CGC 

CAG 
CAA 
CAT 
CAC 

CTG 
CTA 
CTT 
CTC 

CCG 
CCA 
CCT 
CCC

13.01 
19.08 

13.03 
1.23 
10.27 
12.47 

0.57 
0.69 
12.09 
15.38 

12.77 
7.45 
17.15 
20.34 

4.47 
12.05 
14.93 
17.62 

11.63 
6.26 
4.63 
10.63 

34.43 
12.06 
10.67 
15.03 

40.07 
7.04 
13.01 
19.62 

7.04 
16.90 
17.45 
20.03 

0.24 
0.36 

1.00 
0.49 
0.45 
0.55 

0.23 
0.28 
0.44 
0.56 

0.13 
0.07 
0.46 
0.54 

0.06 
0.15 
0.19 
0.22 

0.21 
0.11 
0.08 
0.19 

0.74 
0.26 
0.42 
0.58 

0.40 
0.07 
0.13 
0.20 

0.11 
0.28 
0.28 
0.33 

Not all types of coding statistics are equally powerful for any one spe-
cies. Choosing the coding statistics that have the most discriminating 



4 Data Mining for Bioinformatics     85 

power would lead to better recognition results. We have recently per-
formed a study of several coding statistics for the recognition of human, 
yeast and C. elegans coding and non-coding sequences (Liew et al., 2004). 
The statistics we considered are listed below: 

1. Two ATG triplet features 
Note that the ATG triplet that is involved in the initiation of translation 
is called start codon. 
• Let the total number of the triplet ATGs contained in all three frames 

in a sequence be denoted by n. The number of frames containing the 
triplet ATG in a sequence is denoted by K, i.e., K = 0, 1, 2, 3. The 

ATG triplet statistic is defined by ( ) nKf ×+= 2
1 1 .

• f2 = NATG, where NATG is the number of triplet ATGs in the sequence. 
2. Two stop codon features 

The number of triplets TAA, TAG, and TGA occurring in each frame of 
the sequence is counted. 

• As with f1, the stop codon feature is defined by ( ) nKf ×+= 2
3 1 .

This feature has been used by Wang et al. (2002). 
• ( )TGATAGTAA NNNf ,,max4 = .

3. Three asymmetric features of distribution of nucleotides at the three 
triplet positions  
• The Position Asymmetry (PA) of the sequence (Guigo, 1999) 

Let ),( rbf  be the relative frequency of nucleotide b at triplet posi-

tion r. Let 3/)),(()(
3

1∑ ==
r

rbfbf  be the average frequency of nu-

cleotide b at the three triplet positions, and define the asymmetry in 
the distribution of nucleotide b as the variance of this frequency, i.e., 

∑ = −= 3

1
2))(),(()(

i
bfibfbasym ; the PA of the sequence is defined 

as )()()()(5 TasymGasymCasymAasymPAf +++== .

• One Purine feature 
It is well known that the predominant bases at the first codon position 
in the reading frame are purines and this fact is independent of spe-
cies, whereas bases in non-coding regions tend to be randomly dis-
tributed. The occurrence frequencies of purines in the three reading 
frames are denoted by 3,2,1),( =+ iga ii , and the purine feature 

is defined as 3,2,1),(max6 =+= igaf iii .

• One Pyrimidine feature 
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It is well known that the predominant bases at the third codon posi-
tion in the reading frame are pyrimidines and this fact is independent 
of species. The occurrence frequencies of pyrimidines in the three 
frames are denoted by 3,2,1),( =+ itc ii . The pyrimidine feature 

is defined by 3,2,1),(max7 =+= itcf iii .

4. Nine Z-Curve features (Zhang and Zhang, 1994) 
The Z-Curve features are based on the differences of single nucleotide 
frequencies at the three codon positions between the protein coding 
ORFs and the non-coding ones. The frequencies of bases A, C, G, and T 
occurring in an ORF or a fragment of DNA sequence with bases at posi-
tions 1, 4, 7, …; 2, 5, 8,…; and 3, 6, 9, … are denoted by a1, c1, g1, and 
t1; a2, c2, g2, and t2; and a3, c3, g3, and t3, respectively. They are actually 
the frequencies of bases at the first, second, and third codon positions. 
Let x1, y1, z1; and x2, y2, z2; x3, y3, z3 be given by 

( ) ( )
( ) ( )
( ) ( )

3,2,1, =
⎪
⎩

⎪
⎨

⎧

+−+=
+−+=
+−+=

i

cgtaz

tgcay

tcgax

iiiii

iiiii

iiiii

(4.1)

Then the nine Z-Curve features, f8 to f16, are defined by 

⎪
⎩

⎪
⎨

⎧

===
===

===

316315314

213212211

1101918

,,

,,

,,

zfyfxf

zfyfxf

zfyfxf

(4.2)

5. Three Simple Z-Curve (SZ) features (Wu et al., 2002) 
The SZ features, f17 to f19, are defined by 

( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]

3,2,1,

max

max

max

19

18

17

=
⎪
⎩

⎪
⎨

⎧

+−+=
+−+=
+−+=

i

cgtaf

tgcaf

tcgaf

iiiii

iiiii

iiiii

(4.3)

6. Three periodic correlations features between nucleotide positions 
(Fickett, 1982, and Guigo, 1999) 
• Periodic Asymmetry Index (PAI) 

Given a sequence, the following three distinct probabilities can be 
considered (Konopka, 1994): 

• the probability inP of finding pairs of the same nucleotide at 

distances k = 3, 6, 9, …,  
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• the probability 1
outP  of finding pairs of the same nucleotide 

at distances k = 1, 4, 7,…, and  

• the probability 2
outP  of finding pairs of the same nucleotide 

at distances k = 2, 5, 8,….  
Note that nucleotide pairs at distances of k = 3, 6, 9, … nucleotides 
are at the same codon position, whereas nucleotide pairs at other dis-
tances are not. Because of the 3-base periodic pattern, inP  will be 

larger than the other two probabilities in coding regions, while in 
non-coding regions the three probabilities will be similar. The ten-
dency to cluster homogeneous dinucleotides in a 3-base periodic pat-
tern can be measured by the Periodic Asymmetry Index 

( )
( )21

21

20
,,min

,,max

outoutin

outoutin

PPP

PPP
PAIf == (4.4)

• Average Mutual Information (AMI) (Grosse et al., 2000) 
It is well known that a coding sequence exhibits a 3-base periodicity 
due to non-uniform codon usage, and this periodicity shows up as the 
correlation between nucleotide i and nucleotide j at a distance of k
nucleotides (Li W., 1997). For each distance k, sixteen different indi-
vidual correlations can be calculated. A measure that summarizes all 
individual correlations at a given distance k is the mutual information 
function, 

( ) ( ) ( )
{ }
∑

∈
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

TGCAji ji

ij
ij PP

kP
kPkI

,,,,
2log (4.5)

The mutual information I(k) quantifies the amount of information that 
can be obtained from one nucleotide about another nucleotide at a 
distance k. For a coding sequence, I(k) has larger values for k = 3, 6, 
9, …, and the 3-base periodic pattern in coding sequences is obvious. 
Thus, in coding DNA, I(k) oscillates between two values, while in 
non-coding DNA, I(k) is rather flat. Herzel and Grosse (1995) called 
the two values between which I(k) oscillates in coding DNA the in-
frame mutual information Iin at distances k = 3, 6, 9,…, and the out-
of-frame mutual information Iout at k = 4, 5, 7, 8,… In order to reduce 
the pairs of numbers Iin and Iout to a single quantity, they compute the 
Average Mutual Information (AMI) as (Grosse et al., 2000) 
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3

2
21

outin II
AMIf

+
== (4.6)

• Fourier Spectrum feature 
Periodic correlations in DNA sequences can also be examined by 
means of Fourier analysis (Tiwari et al., 1997). DNA coding regions 
reveal the characteristic 3-base periodicity, which shows up as a dis-
tinct peak at the frequency index k = N/3, where N is the length of the 
sequence. No such peak is apparent for non-coding sequences. The 
Fourier Spectrum feature f22 is defined as follows. Let Ad(t), Cd(t),
Gd(t), and Td(t) be the number of distinct pairs of nucleotide bases A, 
T, G, and C, respectively, in a DNA sequence separated by a distance 
t, where t ranges from 1 to N. Let 

)()()()()( tTtGtCtAts dddd +++= . Let S(k) be the Discrete Fourier 
Transform (DFT) of s(t), i.e., 

∑
−

=

−=
1

0

/2)()(
N

t

NktjetskS π (4.7)

For 3-base periodicity, S(k) should exhibit a strong peak at the fre-

quency index 3/Nk = . Let 
2

)()( kSkP =  be the power spectrum 

of S(k), then the Fourier Spectrum feature f22 is defined as 

∑
+=

−=+

=
wkj
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w
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f

)(
12

1

)(
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(4.8)

where k = N/3 and 2w+1 is the window used to obtain the average 
power spectrum within the window. 

Altogether, 22 statistical features are compared. Their discriminating 
power for coding and non-coding sequences is evaluated using the infor-
mation-theoretic measure called mutual information, which essentially 
measures the information the feature gives us about the two class labels 
(i.e., coding vs non-coding). The mutual information of every feature has 
been computed in the 6,000 Yeast ORFs and 6,000 Yeast NoFeature se-
quences, 3,000 C. elegans coding sequences and 3,000 small non-coding 
RNAs, 1,500 Human exons and 1,500 introns, respectively. The results are 
presented in Table 4.5 and Fig. 4.6. 

We see that, in general, the discriminating power of most of the statisti-
cal features, with the exception of PA, PAI, AMI, and the last SZ feature, 
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is significantly lower for human than for yeast or C. elegans. For the rec-
ognition of human exons, it seems that statistics that measure the asymme-
try in nucleotide distribution at the three codon positions (PA), and those 
that measure the periodic structure in the sequence (PAI and AMI) have 
better discriminating power than the other statistics (except the three SZ 
features). One can also observe that the three SZ features perform reasona-
bly well for the recognition of human exons. In fact, the third SZ feature 
has the second largest discriminating power among all 22 features tested. 
The three SZ features also perform better than almost all Z Curve features 
for Human, although the two sets of features are quite closely related. This 
observation is less valid for the other two species. 

Table 4.5. Comparison of mutual information of 22 statistical features for three 
different species. 

 Human Yeast C.elegans 

f1 = ATG triplet feature 1 0.0378 0.2507  0.2912  
f2 = ATG triplet feature 2 0.0550  0.2748  0.3032  
f3 = Stop Codon feature 1 0.1000  0.1856  0.2152  
f4 = Stop Codon feature 2 0.0110  0.1665  0.1759  
f5 = Position Asymmetry (PA) 0.3073 0.1320 0.1066 
f6 = First Codon (Purines) 0.0629 0.2884 0.2308 
f7 = Third Codon (pyrimidines) 0.0546 0.2435 0.2857 

f8 = (a1+g1)-(c1+t1) 0.0451 0.5377 0.4459 
f9 = (a1+c1)-(g1+t1) 0.0417 0.1592 0.0662 
f10 = (a1+t1)-(c1+g1) 0.0826 0.0702 0.0565 
f11 = (a2+g2)-(c2+t2) 0.0862 0.1082 0.0999 
f12 = (a2+c2)-(g2+t2) 0.0839 0.3791 0.2127 
f13 = (a2+t2)-(c2+g2) 0.1111 0.1646 0.2736 
f14 = (a3+g3)-(c3+t3) 0.0388 0.1439 0.1252 
f15 = (a3+c3)-(g3+t3) 0.0215 0.1083 0.1133 

Z

f16 = (a3+t3)-(c3+g3) 0.0683 0.1489 0.1034 

f17 = ( ) ( )[ ]iiiii tcga +−+max 0.1406 0.4270 0.2623 

f18 = ( ) ( )[ ]iiiii tgca +−+max 0.0985 0.3188 0.2339 
S
Z

f19 = ( ) ( )[ ]iiiii cgta +−+max 0.2977 0.1813 0.2304 

f20 = PAI 0.1478 0.0308 0.0930 
f21 = AMI 0.1760 0.0020 0.0558 
f22 = FFT 0.1182 0.5155 0.4308 
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Another important observation is that features that do well on Yeast and 
C. elegans perform rather poorly on Human. The converse is generally true 
as well. We see that PA, which is the most discriminating feature among 
all 22 features for Human, has a fairly low discriminating value for both 
Yeast and C. elegans. The first SZ feature and the FFT feature are good for 
Yeast and C. elegans, and are also fairly good for human. These two fea-
tures could potentially be useful for independent recognition of exons of 
species. 

Fig. 4.6. The MI of 22 features for Human (top), Yeast (middle), and C.elegans 
(bottom) 

From the above study, we see that certain statistical features are more 
species-dependent than others. Choosing the better features, and a good 
classification algorithm, would potentially give a better recognition rate. 
To illustrate, we perform classification experiments using the two most 
discriminating features for Human, i.e., set1 = (f5, f19), and the two most 
discriminating features for Yeast and C. elegans, i.e., set2 = (f8, f22) (see 
Fig. 4.6 for their MI values relative to other features). Using a simple K-
Nearest-Neighbor (KNN) classifier, we obtain classification accuracy for 



4 Data Mining for Bioinformatics     91 

Human of 80.33% for set1, and only 63.16% for set2. For Yeast, the accu-
racy is 81.74% for set1 and 90.89% for set2, while for C. elegans, the ac-
curacy is 80.28% for set1 and 89.83% for set2. In another experiment us-
ing just the three SZ features, the PA feature, and the first stop codon 
feature, we were able to obtain around 90~92% accuracy in the classifica-
tion of short human exons and introns using the same KNN classifier, 
without compromising sensitivity and specificity (Wu et al., 2003b, and 
Liew et al., 2004). 

Besides consideration of coding statistics, gene prediction could also in-
volve identification of splice sites, promoter regions, transcription factors 
binding sites, and polyA sites (Mount, 2001). Many database and algo-
rithms have been created for this purpose. 

Although significant advances in gene prediction algorithms have been 
made, gene prediction in the complex genome of higher eukaryotes is still 
a difficult problem. Some of the latest gene prediction algorithms have 
used machine learning techniques such as neural networks, pattern recog-
nition methods, and rule-based methods and probabilistic models such as 
Hidden Markov models to achieve better prediction results. Some exam-
ples of these algorithms are GRAIL (Uberbacher et al., 1996), GeneScan 
(Tiwari et al., 1997), Glimmer (Salzberg et al., 1998a), GeneMark.hmm 
(Lukashin and Borodovsky, 1998), MZEF (Zhang, 1997), GeneFinder 
(http://dot.imgen.bcm.tmc.edu:9331/gene-finder/gf.html), and MORGAN  
(Salzberg et al., 1998b). 

It is clear that additional work is required to further improve the detec-
tion rates and to decrease the level of falsely predicted genes. Such im-
provements may come from the incorporation of new and better sub-
models of promoters or initial and terminal exons, as well as of other 
physical properties and signals present in the DNA, such as bendability or 
nucleosome positioning. 

Phylogenetic Analysis 

Analysis of multiple DNA sequences for phylogenetic study is an impor-
tant area of sequence analysis. A phylogenetic analysis of a family of re-
lated DNA or protein sequences is a determination of how the family 
might have been derived during molecular evolution (Li W.H., 1997; 
Graur and Li, 2000; and Swofford et al., 1996). Phylogenetic analysis 
leads to the construction of an evolution tree. The evolutionary relation-
ships among the sequences are depicted by placing the sequences the 
leaves on the tree in such a way that the branching relationship in the tree 
reflects the degree to which different sequences are related. Phylogenetic 
study performed on a gene family could also aid in the prediction of genes 
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with equivalent or similar functions. It could also be used to track changes 
in the genome of a rapidly changing (i.e., by mutation) species, such as a 
virus. 

Phylogenetic analysis is closely linked to sequence alignment. Three 
methods that are commonly used to derive the phylogenetic tree that best 
account for the observed variation in a group of sequences are: maximum 
parsimony method, distance method, and maximum likelihood method 
(Felsenstein, 1996). The choice of method depends on the results of the 
multiple sequence alignment performed on the set of sequences, and 
whether the assumptions underlying the method fit well with the data. 

For parsimony analysis, the best results are obtained when the amount 
of variation among all pairs of sequences is similar and the amount of 
variation is small. It is not good for reconstructing ancient phylogenies. If 
variation among sequences is present (some sequences are more similar 
than others) and the amount of variation is intermediate, distance method 
can be used. In the distance method, the concept of genetic distance be-
tween two sequences needs to be defined appropriately, depending on the 
type of sequences in consideration, and on their structural properties. Al-
gorithms are also available for converting sequence similarity scores into 
distance scores (Feng and Doolittle, 1996, Altschul and Gish, 1996). The 
genetic distances between sequences are then used to construct the phy-
logenetic tree. Maximum likelihood methods are particularly useful when 
the sequences are more variable. The method uses probability calculations 
based on an explicit evolutionary model, e.g., the F84 substitution model 
in the PHYLIP package (Felsenstein, 1993) and the TN93 substitution 
model (Tamura and Nei, 1993), to find a tree that best accounts for the 
variation in the sequence. 

Phylogenetic analysis programs are widely available. Two main ones 
are PHYLIP (available at http://evolution.genetics.washington.edu/ 
phylip.html) and PAUP (available at http://www.lms.si.edu/PAUP/). Both 
packages provide the three main methods for phylogenetic analysis de-
scribed above, as well as many types of evolutionary models for sequence 
variation. 

4.4 Protein Data Analysis 

4.4.1 Protein and Amino Acid Sequence 

Protein synthesis constitutes the final stage of information flow within a 
cell, where the genetic code in the coding regions of a DNA sequence is 
translated into biomolecular end products that perform specific cellular and 
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biological functions. Proteomics, the study of proteins and their interac-
tions, is emerging as an important area of bioscience. An understanding of 
proteins and their functions would lead to new approaches for the diagno-
sis and treatment of diseases, for the discovery of new drugs, and for dis-
ease control.  

Proteins are composed of linear, unbranched chains of amino acids 
(from an alphabet of 20 amino acids), linked together by peptide bonds. 
Amino acids, the basic building blocks of proteins, have a general struc-
ture, as shown in Fig. 4.7 The general structure consists of two functional 
groups (amino group, NH2, and carboxyl group, COOH), an H atom, and a 
distinctive side group R, all bound to a carbon center called the alpha-
carbon. The differences between the 20 amino acids are in the nature of the 
R groups. These vary considerably in their chemical and physical proper-
ties. It is the chemistry of the R groups that determine the many interac-
tions that stabilize the structure of protein and enable its biological func-
tion. Special roles are played by glycine (G), which has only a hydrogen 
atom as its side group, and therefore has greater local flexibility in struc-
tures, and cysteine (C), which can react with another cysteine to form a 
cross-link (disulphide bond) that can stabilize the protein structure. The 
amino acids are linked together by peptide bonds to form a polypeptide 
chain. The peptide bond results from a condensation reaction involving the 
amino and carboxylic acid moieties on two amino acids (see Fig. 4.8). The 
peptide bond is very stable and has unusual conformational properties. 

Fig. 4.7. General structure of amino acid 

Proteins are complex organic molecules that perform their functions 
through interactions with other molecules at the molecular level. A full 
understanding of the molecular functions of proteins therefore requires in-
formation about their 3D structures at the molecular level. Protein struc-
tures are hierarchical (Branden and Tooze, 1999). The primary structure of 
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protein refers to the sequence of amino acids that make up the protein. The 
secondary structure refers to the local folding pattern of the polypeptide 
chain. The tertiary structure describes how the secondary structure ele-
ments are arranged to form the overall 3D folding pattern. The tertiary 
structure is held together by hydrogen, ionic, and disulphide bonds be-
tween amino acids. It is this unique structure that gives a protein is specific 
function. Examples of proteins with tertiary structure include enzymes. 
The quaternary structure describes the interaction of two or more globular 
or tertiary structures and other groups such as metal ions or cofactors that 
make up the functional protein. The quaternary structure is held together 
by ionic, hydrogen, and disulfide bonds between amino acids. An example 
of a protein with a quaternary structure is hemoglobin.

Fig. 4.8. The formation of a peptide bond between two amino acids to form a pep-
tide chain. The N-Cα-N sequence is repeated throughout the protein and forms the 
backbone of the 3D structure 

The secondary structure of proteins is predominantly stabilized by hy-
drogen bonds and is generally classified into four types: α-helix, β-sheet, 
loop, and random coil. The α-helix is the most common form of secondary 
structure in proteins. The helix has 3.6 amino acid residues per turn, and is 
stabilized by hydrogen bonding between the backbone carbonyl oxygen of 
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one residue and the backbone NH of the fourth residue along the helix. 
Certain amino acids have a distinct preference for α-helices. Alanine (A), 
glutamic acid (E), leucine (L), and methionine (M) are good helix formers, 
whereas praline (P), glycine (G), tyrosine (Y), and serine (S) are helix-
breaking residues. This preference forms the basis for computer prediction 
of the general locations of α-helices in a new protein sequence. 

The second most common element of secondary structure in proteins is 
the β-sheet. A β-sheet is formed from several individual β-strands that are 
distant from each other along the primary protein sequence (see Figure. 
4.9). β-strands are usually five to 10 residues long, and are in fully ex-
tended conformation. The individual strands are aligned next to each other 
in such a way that carbonyl oxygens are hydrogen-bonded with neighbor-
ing NH groups. Two types of connection topology are seen in β-sheets. 
The most stable is the antiparallel β-sheet. In antiparallel sheets, the β-
strands are connected sequentially. Parallel β-sheets are less stable due to 
the hydrogen bonds not being optimally aligned, and are formed from 
segments of a peptide backbone distantly connected by other types of sec-
ondary structures. It is more difficult to predict the location of β-sheets 
than of α-helices.  

Fig. 4.9. Hydrogen bond patterns in beta sheets. Here, a four-stranded beta sheet, 
which contains three antiparallel and one parallel strand, is drawn schematically. 
Hydrogen bonds are indicated with red lines (antiparallel strands) and green lines 
(parallel strands) connecting the hydrogen and receptor oxygen 
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Fig. 4.10. Seven protein classes as defined in SCOP. Images are taken from 
http://scop.mrc-lmb.cam.ac.uk/scop/ 
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Loops are regions of a protein chain that connect α-helices and β-strands 
or sheets to each other. In general, the helices and sheets form the stable 
hydrophobic core of the protein, and the connecting loops are to be found 
on the surface of the structure. Loops are rich in polar and charged amino 
acids, and are frequently a component of binding sites and enzyme active 
sites. Because amino acids in loops are not constrained by space and envi-
ronment, unlike amino acids in the core region, and because they do not 
have an effect on the arrangement of secondary structures in the core, more 
substitutions, insertions, and deletions may occur. Thus, in a sequence 
alignment, the presence of these features may be an indication of a loop. 

Random coil is the term used for segments of polypeptide chains that do 
not form regular secondary structures. Such conformations are not really 
random: they are the result of a balance of interactions between amino acid 
side chains and the solvent and interactions between sidechains. The pre-
dominant hydrogen-bonding pattern in random coils is between polypep-
tide and water; concerted hydrogen bonding networks are absent. 

Depending on the type of secondary structures present, the tertiary 
structure of a protein is classified into seven classes in the SCOP database 
(structural classification of proteins, http://scop.mrclmb.cam.ac.uk /scop/): 

1. All α proteins (Fig. 4.10a) 
2. All β proteins (Fig. 4.10b) 
3. Alpha and beta proteins (α / β) (Fig. 4.10c) 

Mainly parallel β-sheets with intervening α-helices
4. Alpha and beta proteins (α +b) (Fig. 4.10d) 

Mainly segregated α-helices and antiparallel β-sheet
5. Multi-domain proteins (α and β) (Fig. 4.10e) 

Folds consisting of two or more domains belonging to different classes
6. Membrane and cell surface proteins and peptides (Fig. 4.10f) 

Exclude proteins in the immune system
7. Small proteins (Fig. 4.10g) 

Usually dominated by metal ligand, heme, and/or disulfide bridges

Some of the internet resources on protein structure classification, model-
ing, and databases are listed below: 

• http://www.biochem.ucl.ac.uk/bsm/cath/class.html 
The CATH database is a hierarchical domain classification of protein 
structures in the Brookhaven protein databank (Orengo et al., 1997, and 
Pearl et al., 2000). The four major levels in the hierarchy are class, ar-
chitecture, topology (fold family), and homologous superfamily. 

• http://scop.mrc-lmb.cam.ac.uk/scop/ 
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The SCOP (Structural Classification of Proteins) database aims to pro-
vide a detailed and comprehensive description of the structural and evo-
lutionary relationships between all proteins whose structure is known, 
including all entries in the Protein Data Bank (Murzin et al., 1995; Lo 
Conte et al., 2002; and Andreeva et al., 2004). The SCOP classification 
of proteins has been constructed manually by visual inspection and 
comparison of structures. Proteins are classified to reflect both structural 
and evolutionary relatedness. The principal levels of hierarchy in SCOP 
are family, superfamily, and fold. 

• http://www.expasy.org/swissmod/SWISS-MODEL.html 
SWISS-Model is a fully automated protein structure homologymodeling 
server (Schwede et al., 2003). A variety of methods are used in Swiss-
Model. 

• http://www.rcsb.org/pdb/ 
Protein Data Bank (PDB) (Berman et al., 2000) is a repository of 3D 
protein structure data determined from X-ray or nuclear magnetic reso-
nance (NMR). The 3D coordinates of each atom in the protein molecule 
is deposited as a PDB entry. PDB files can be retrieved and displayed 
with a molecular viewer such as Rasmol (available at 
http://www.bernstein-plus-sons.com/software/rasmol/) or Swiss-
PdbViewer (available at http://us.expasy.org/spdbv/). 

• http://www2.ebi.ac.uk/dali/ 
The DALI (Distance ALIgnment tool) server is a network service for 
comparing protein structures in 3D. A user submits the coordinates of a 
query protein structure and DALI compares them against those in the 
PDB. 

• http://www2.ebi.ac.uk/dali/fssp/fssp.html  
The FSSP (Fold classification based on Structure-Structure alignment of 
Proteins) database is based on an exhaustive all-against-all 3D structure 
comparison of protein structures currently in the PDB using the DALI 
program (Sander, 1996a). The classification and alignments are auto-
matically maintained and continuously updated using the DALI search 
engine. 

• http://www.compbio.dundee.ac.uk/3Dee/ 
3Dee contains structural domain definitions for all protein chains in the 
PDB that have 20 or more residues and are not theoretical models (Sid-
diqui et al., 2001). The domains have been clustered by both sequence 
and structural similarity. 

• http://www.sander.ebi.ac.uk/dssp/ 
The DSSP (Database of Secondary Structure in Proteins) database is a 
database of secondary structure assignments for all protein entries in the 
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Protein Data Bank (PDB). The DSSP program was designed by Wolf-
gang Kabsch and Chris Sander (Kabsch and Sander, 1983) to standard-
ize secondary structure assignment. The DSSP program defines secon-
dary structure, geometrical features, and solvent exposure of proteins 
given the 3D atomic coordinates in Protein Data Bank format. The pro-
gram does not predict protein structure. 

Before a protein can be studied, it has to be identified. There are two 
main approaches for protein identification (Figeys, 2002): (i) identification 
by 2D gel electrophoresis, which separates proteins by both size and over-
all electrical charge, and (ii) identification by mass spectrometry, where 
the exact mass of each peptide fragment cleaved by using a selective pro-
tease, for example, the enzyme trypsin, can be determined. Knowledge of 
the exact mass of each of the protein fragments serves as a “fingerprint,” 
and allows the identification of the protein’s gene and, thus, its amino acid 
sequence. 

As proteins are amino acid sequences, and the amino acid composition 
is dictated by the genetic code in a DNA sequence, proteins can also be de-
rived, in principle, directly from DNA sequence data. The determination of 
proteins by direct translation from DNA sequences is an attractive ap-
proach in view of the large amount of nucleotide sequences available to-
day. However, the existence of introns in a (eukaryotes) gene and the oc-
currence of alternative splicings make the prediction of protein from a 
nucleotide sequence a difficult task. 

4.4.2 Protein Data Analysis 

Protein Sequence Comparison 

Proteins can be compared in terms of sequence similarity or structural 
similarity. There is one important difference between sequence and struc-
tural similarity. Significant sequence similarity is usually an important in-
dicator of an evolutionary relationship between sequences. In contrast, sig-
nificant structural similarity is common, even among proteins that do not 
share any sequence similarity or evolutionary relationship. 

The similarity between two protein sequences can be assessed by se-
quence comparison. In protein sequence alignment, the problem of degen-
eracy in the genetic code (where multiple DNA triplets may code for the 
same amino acid) does not occur. In addition, it is much less likely that 
two proteins will have the same letter (amino acid), by chance alone, at 
any position, since protein sequences are written with a 20-letter alphabet 
(see Table 4.1 in Subsection 4.2.1). Many of the sequence alignment and 
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comparison tools that are used for DNA sequence comparison can also be 
used for protein sequences. In protein sequence alignment, the amino acid 
sequence of a protein is aligned to another amino acid sequence, with pos-
sible insertions (i.e., gaps) and deletions, such that the distance between 
the two sequences is minimized or the similarity score is maximized. 

To align and assess the similarity of two protein sequences, the varying 
degrees of similarity between amino acids needs to be taken into account. 
The varying degrees of similarity reflect the different likelihoods of one 
amino acid being substituted for another during the course of molecular 
evolution. Quantification of the similarity between amino acids is by 
means of scoring matrices. The 20 by 20 matrices, relating each amino 
acid to every amino acid, fall into the PAM, Percent or Point Accepted 
Mutation (Dayhoff et al., 1978; Schwartz and Dayhoff, 1978; and Jones et 
al., 1992b), and BLOSUM, BLOcks SUbstitution Matrix (Henikoff and 
Henikoff, 1992, 1994) classes.  

PAM is a unit introduced by Dayhoff et al. to quantify the amount of 
evolutionary change in a protein sequence. One PAM unit is the amount of 
evolution which will change, on average, 1% of amino acids in a protein 
sequence. A PAM(x) substitution matrix is a lookup table in which scores 
for each amino acid substitution have been calculated based on the fre-
quency of that substitution in closely related proteins, i.e., global align-
ments of protein sequences that are at least 85% identical, that have ex-
perienced a certain amount x of evolutionary divergence. Other PAM 
matrices are extrapolated from PAM1 by matrix multiplication. 

The BLOSUM matrix is constructed from blocks of sequences derived 
from the Blocks database (http://www.blocks.fhcrc.org/). The Blocks data-
base contains multiply aligned ungapped segments or blocks that corre-
spond to the most highly conserved regions of proteins. BLOSUM is con-
structed from these blocks by examining the substitution frequencies of 
each amino acid pair. The matrix number in a BLOSUM matrix, e.g., as in 
BLOSUM 62, means that the matrix is derived from blocks containing 
(≥62%) identities in ungapped sequence alignment. Unlike with PAM, at 
least that many BLOSUM matrices are based on observed alignments and 
are not extrapolated from comparisons of closely related proteins. In gen-
eral, BLOSUM performs better than PAM. BLOSUM 62 is the default ma-
trix for the standard protein BLAST program. 

Alignment tools for protein sequences are very similar to those for nu-
cleotide sequences. Some popular alignment tools are: (i) the BLAST fam-
ily (http://www.ncbi.nlm.nih.gov/BLAST/), i.e., blastp, phi-blast, psi-
blast, (ii) FASTA (http://www.ebi.ac.uk/fasta33/#), and (iii) ClustalW (for 
multiple sequence alignment, http://www.ebi.ac.uk/clustalw/). 
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Protein Structure Comparison 

The 3D structure of a protein can be determined by X-ray crystallography 
or nuclear magnetic resonance (NMR) spectroscopy (Branden and Tooze, 
1999). The procedure for X-ray crystallography requires the protein to first 
be in the form of crystals. A narrow beam of X-rays is then directed at the 
protein crystal, where the atoms in the protein molecules scatter the incom-
ing X-rays. These scattered waves either reinforce or cancel one another, 
producing a complex diffraction pattern. The position and intensity of each 
spot in the diffraction pattern contain information about the position of the 
atoms in the protein crystal that can be deciphered by a computer. By 
combining this information with the known amino acid sequence of the 
protein, an atomic model of the protein’s structure can be generated. In 
NMR spectroscopy, a solution of pure protein is placed in a strong mag-
netic field and then bombarded with radio waves of different frequencies. 
The hydrogen nuclei in the protein would generate an NMR signal that can 
be used to determine the distances between the amino acids and between 
different parts of the protein. The NMR spectrum, together with the known 
amino acid sequence, would allow us to compute the 3D structure of the 
protein. 

As more and more protein structures have been determined and depos-
ited in various protein structure databases, the prediction of protein struc-
ture by computer algorithms is becoming more feasible. When proteins of 
unknown structure are similar to a protein of known structure at the se-
quence level, the 3D structure of the proteins can be predicted. The 
stronger the similarity and identity, the more similar are the 3D folds and 
other structural features of the proteins. However, it should be noted that 
proteins with no apparent sequence similarity could also have very similar 
structure, and that the 3D structure of protein is much more highly con-
served than the amino acid sequence (Mizuguchi and Blundell, 2000, 
Shapiro and Harris, 2000). By tracking their structural similarities, very 
distant evolutionary relationships between proteins may be inferred. 

Several methods have been proposed to compare protein structures and 
measure the degree of structural similarity between them. These methods 
are based either on alignment of intra- and inter-molecular atomic dis-
tances (e.g., DALI) or on alignment of secondary structure elements (e.g., 
VAST). In the latter case, two proteins are compared based on the types 
and arrangements of their α-helices and β-strands, as well as on the ways 
in which these elements are connected. Because there are relatively few 
secondary structural elements in proteins, vectors giving their lengths, rela-
tive positions, and directions may provide a fast and reliable way to align 
structures. 
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The well known program DALI (Distance ALIgnment tool) is based on 
the alignment of 2D distance matrices, which represent all intra-molecular 
Cα-Cα distances of a protein structure (Holm and Sander, 1993, and Holm 
and Sander, 1996a). For a given pair of structures, DALI attempts to com-
pute the optimal arrangement of similar contact patterns from their respec-
tive distance matrices. Each distance matrix is first split into hexapeptide 
fragments, and all pairs of similar fragments from the two structures are 
stored in a pair list. The final alignment is computed by assembling pairs 
of overlapping fragments from the pair list. The scoring function for an 
alignment of two structures is based on the intra-molecular distances. 
DALI has been used to perform an exhaustive all-against-all 3D structure 
comparison of protein structures currently in the Protein Data Bank (PDB) 
to create the FSSP database (Holm and Sander, 1996b; http://www2. 
ebi.ac.uk/dali/fssp/fssp.html) and the classification and alignments in FSSP 
are automatically maintained and continuously updated using DALI. 

The program VAST (Vector Alignment Search Tool) is based on align-
ing secondary structure elements (Madej et al., 1995, and Grindley et al., 
1993). In VAST, all pairs of secondary structure elements (one from each 
structure) that have the same type are represented as nodes of a graph. Two 
nodes are connected by an edge if the distance and angle between the cor-
responding pairs of secondary structure elements from the two proteins are 
within some threshold. The graph therefore represents correspondences be-
tween pairs of secondary structure elements that have the same type, rela-
tive orientation, and connectivity. This correspondence graph is then 
searched to find the maximal subgraph such that every node in the sub-
graph is connected to every other node in the subgraph and is not con-
tained in any larger subgraph with this property. This finds the initial sec-
ondary structure alignment. VAST then extends this initial alignment to a 
residue level alignment using a Gibbs sampling technique. VAST only re-
ports alignments that yield a P-value less than 0.05. A P-value of 0.05 in-
dicates that VAST expects to find an alignment with the same degree of 
similarity by chance in 5% of all pair-wise comparisons. VAST has been 
used to compare all known PDB domains to each other. The results of this 
computation are included in NCBI’s Molecular Modeling Database at 
http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.html. 

Protein Structure Prediction 

Comparative Modeling 

The structure of a new protein could be predicted based on the presence of 
certain patterns or motifs, such as specific amino acid patterns or profiles 
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that are known to have specific structures. This type of prediction is also 
called comparative modeling, and is useful when there is a clear sequence 
relationship between the target structure and one or more known struc-
tures. To facilitate such motif-based protein structure prediction, known
proteins are being analyzed computationally to discover the motif-structure 
relationship in several motif-based protein family databases. The 
PROSITE database (http://us.expasy.org/prosite/) (Sigrist et al., 2002) is 
an annotated collection of motif descriptors dedicated to the identification 
of protein families and domains. The motif descriptors used in PROSITE 
are either patterns or profiles that are derived from multiple sequence 
alignments of homologous sequences. Patterns, which are typically around 
10 to 20 amino acids in length, arise because specific residues or regions 
thought or proved to be important to the biological function of a group of 
proteins are conserved in both structure and sequence during evolution. 
Patterns are qualitative motif descriptors; they either do or do not match. In 
contrast, profiles are quantitative motifs providing numerical weights for 
each possible match and mismatch between a sequence residue and a pro-
file position. Profiles characterize protein domains over their entire length, 
not just over their most conserved parts. A mismatch at a highly conserved 
position can still be accepted provided the rest of the sequence displays a 
sufficiently high level of similarity. The generalized profiles used in 
PROSITE allow the detection of even poorly conserved domains or fami-
lies. 

Several other motif-based protein family databases are: Pfam (Protein 
families database of alignments and HMMs, at http://www.sanger.ac.uk 
/Software/Pfam/ (Sonnhammer et al., 1998), BLOCKS, at http://blocks. 
fhcrc.org/ (Henikoff et al., 2000), and eMOTIF, at http://dna.stanford.edu 
/emotif (Huang and Brutlag, 2001). Pfam is a collection of protein families 
and domains, based on multiple protein alignments and profile-HMMs of 
these families. BLOCKS is a collection of multiply aligned ungapped 
segments that correspond to the most highly conserved regions of proteins. 
eMOTIF is a collection of protein sequence motifs representing conserved 
biochemical properties and biological functions derived from the 
BLOCKS and PRINTS, at http://www.bioinf.man.ac.uk/dbbrowser/ 
PRINTS/ (Attwood, 2002), databases. 

Ab Initio Structure Prediction 

The function of a protein is directly related to the 3D shape, i.e., the fold-
ing, of the molecule, and the 3D shape is directly determined by the se-
quence of amino acids in the molecule. Thus, the primary structure, i.e., 
the sequence of amino acids, ultimately determines the fold (3D structure) 
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and function of a protein. A major goal in bioinformatics and structural 
molecular biology is to understand the relationship between the amino acid 
sequence and the 3D structure in protein, and to predict the fold based on 
the amino acid sequence alone. This type of structure prediction directly 
from the amino acid sequence is called ab initio structure prediction. The 
protein folding problem is often described as the most significant problem 
remaining in structural molecular biology, and to solve the protein folding 
problem is to break the second half of the genetic code. Solving the protein 
folding problem is the key to rapid progress in the fields of protein engi-
neering and rational drug design. 

However, protein fold prediction from an amino acid sequence is still a 
distant goal, and most current algorithms aim at predicting only the secon-
dary structures, such as α-helices, β-strands, and loops/coils. The predic-
tion of the secondary structure is an essential intermediate step on the way 
to predicting the full 3D structure of a protein. If the secondary structure of 
a protein is known, it is possible to derive a comparatively small number 
of possible tertiary (3D) structures using knowledge about the ways that 
the secondary structural elements pack. 

The assumption on which all secondary structure prediction methods are 
based is that there is a correlation between the amino acid sequence and 
the secondary structure, and that a given short stretch of sequence may be 
more likely to form one type of secondary structure than another. Some of 
the major computational methods of secondary structure prediction are: (1) 
statistical feature-based method, (2) nearest neighbor method, and (3) neu-
ral network-model method. 

In the statistical feature-based method of secondary structure prediction, 
the frequency of occurrence of each of the 20 amino acids in different sec-
ondary structures is used to create a scoring matrix. The method is based 
on the observation that certain amino acids have preference for certain 
secondary structures. For example, it was found that amino acids Ala (A), 
Glu (G), Leu (L), and Met (M) are strong predictors of α-helices, but that 
Pro (P) and Gly (G) are predictors of a break in a helix (Chou and Fasman, 
1978). To predict a secondary structure, a sequence is scanned using a slid-
ing window for the occurrence of amino acids that have a high probability 
for one type of structure, as measured by the scoring matrices. In the Gar-
nier, Osguthorpe, and Robson (GOR) method (Garnier et al., 1978, 1996), 
a window of 17 residues is used for the prediction of the structural con-
formation of the central amino acid in the window. The GOR method es-
timates the joint probabilities of secondary structure S and amino acid a
from sequences in structural databases, and uses these probabilities to es-
timate the information difference between the hypotheses that residual a is 
in structure S and residual a is not in structure S. Besides considering the 
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influence of each amino acid in the window independently, a recent ver-
sion of GOR (GOR IV, http://abs.cit.nih.gov/gor/) also considers the influ-
ence of pairwise combinations of amino acids in the flanking region, or of 
a flanking amino acid and the center amino acid when predicting the struc-
tural conformation of the center amino acid. GOR IV is reported to have a 
mean accuracy of Q3 = 64.4% for a three state prediction (Q3 is the per-
centage of residues correctly predicted for all three structures; α-helix, β-
strand, and coil).  

Nearest-neighbor method of secondary structure prediction predicts the 
secondary structural conformation of an amino acid in the query sequence 
by identifying training sequences of known structures that are homologous 
to the query sequence (Yi and Lander, 1993). The nearest-neighbor 
method requires the availability of a set of training sequences with known 
structures but with minimal sequence similarity to each other, and a scor-
ing scheme for measuring similarity between sequence segments. A large 
list of short sequence fragments is then generated by sliding a window of 
length n (e.g., n = 17) along each training sequence, and the secondary 
structure of the center amino acid in the window is recorded. For structure 
prediction, a window of the same size is applied to the query sequence and 
the amino acid in the window is compared to each of the sequence frag-
ments. The k (e.g., k = 50) bestmatching fragments are identified and the 
frequencies of the known secondary structures of the center amino acids in 
each of the matching fragments are used to predict the secondary structure 
of the center amino acid in the query window. Outputs from several near-
est-neighbor predictors (i.e., with different parameters for n and k, and bal-
anced or unbalanced prediction) could be combined using a simple major-
ity vote rule or a more sophisticated machine learning algorithm such as 
neural network to improve the prediction accuracy. Finally, a set of filter-
ing rules could be applied to exclude unrealistic predictions such as unusu-
ally short α-helices and β-strands.  

The program NNSSP at http://searchlauncher.bcm.tmc.edu/psspre-
diction/Help/nnssp.html (Salamov and Solovyev, 1995, 1997) is a nearest-
neighbor based secondary structure prediction algorithm. NNSSP uses a 
scoring system that combines an amino acid sequence similarity matrix 
with the local structural environment scoring method of Bowie et al. 
(1991), and takes into consideration the N- and C-terminal positions of α-
helices, β-strands, and β-turns as distinctive types of secondary structures. 
Using multiple sequence alignments and a simple jury decision procedure, 
and by excluding the subset of most dissimilar sequences from the training 
database, an overall three-state accuracy (Q3) of 72.2% was reported 
(Salamov and Solovyev, 1995). Further improvement in NNSSP prediction 
accuracy (up to 73.5%) was achieved by using non-intersecting local se-
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quence alignments of the query sequence with sequences having known 
3D structures (Salamov and Solovyev, 1997). Another method that also 
uses nearest-neighbor prediction is the program called PREDATOR 
(Frishman and Argos, 1996, 1997). 

The neural network-based method uses an artificial neural network 
which simulates the neural system in the brain for structure prediction. The 
general architecture for a neural network model consists of three layers of 
processing units or nodes – the input layer, the hidden layer, and the output 
layer (Lippmann, 1987). The main class of neural network relevant to pro-
tein secondary structure prediction is the feed-forward network, or multi-
layer perceptron (MLP). In a feed-forward network, signals are sent from 
the nodes in the input layer to the nodes in the hidden layer and from the 
nodes in the hidden layer to the nodes in the output layer through links be-
tween units. The links may amplify or attenuate the signals by a weighting 
factor associated with each link. Except for the input layer nodes, the net 
input to each node is the sum of the weighted outputs of the nodes in the 
prior layer. Each node in the hidden and output layers is activated and pro-
duces an output signal in accordance with the inputs to the node, the acti-
vation function of the node (typically a sigmoidal function), and the bias of 
the node. The outputs of the input layer nodes may be taken to be equal to 
the inputs, or to be normalized within a range, i.e., -1 to +1. Figure 4.11 
shows the typical architecture of a three-layer feed-forward network. 

Fig. 4.11. A three-layer feed-forward neural network 

Neural networks generalize by extracting the underlying physicochemi-
cal principles from the training sequence data. Training the network is the 
process of adjusting the weights w associated with each link. Initially, the 



4 Data Mining for Bioinformatics     107 

weights are assigned random values. A sliding window of 13-17 amino 
acid residues is positioned along a training sequence and the predicted out-
put is compared to the known structure of the center amino acid residue. 
Errors in the predictions are used for adjusting the weights using the back-
propagation algorithm (Rumelhart et al., 1986). The back-propagation al-
gorithm uses a gradient search technique to minimize a cost function equal 
to the mean square difference between the desired and the actual network 
outputs. Training by back-propagation is stopped when the errors cannot 
be reduced further. 

The PHDsec is a neural network-based secondary structure prediction 
algorithm (Rost and Sander, 1993, 1994, and Rost 1996) (http://www. 
embl-heidelberg.de/predictprotein/). PHDsec predictions have three main 
features: (1) improved accuracy by using evolutionary information con-
tained in multiple sequence alignments as input to the neural networks, (2) 
improved β-strand prediction accuracy through a balanced training proce-
dure, and (3) more accurate prediction of secondary structure segments by 
using a multi-level system. The first level in PHDsec is a three-layer feed-
forward neural network. Input to this first level sequence-to-structure net-
work consists of two contributions: one from the local sequence, i.e., taken 
from a window of 13 adjacent residues, and another from the global se-
quence statistics. Output of the first level network is the 1D structural state 
of the residue at the center of the input window, i.e., α-helix (H), β-strand 
(E), and loop (L). The second level is a three-layer feed-forward structure-
to-structure network. The output for the second level network is identical 
to the first level. The second level network introduces a correlation be-
tween adjacent residues with the effect that the predicted secondary struc-
ture segments have length distributions similar to the observed distribu-
tions. The third level consists of an arithmetic average over independently 
trained networks (jury decision). The final level is a simple filter that af-
fects only drastic, unrealistic predictions (e.g., HEH to HHH; EHE to EEE; 
and LHL to LLL). PHDsec is reported to have a prediction accuracy of Q3 
> 72%. 

PSIPRED (Jones, 1999, and McGuffin et al., 2000) (http://bioinf. 
cs.ucl.ac.uk/psipred/) is another neural network-based secondary structure 
prediction algorithm that was reported to have very high prediction accu-
racy, with a Q3 score of 76.5% to 78.3%. PSIPRED incorporates two sim-
ple feed-forward neural networks that perform analysis on the iterated pro-
file (position-specific scoring matrix) obtained from PSI-BLAST, and 
Position Specific Iterated - BLAST (Altschul et al., 1997). The high sensi-
tivity and accuracy of the PSI-BLAST alignments was thought to be a ma-
jor contributing factor to the high prediction rate of the PSIPRED method.
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Hidden Markov Models (HMM) have also been applied in protein struc-
ture prediction. In one example of this approach, the models are trained on 
patterns of α-helix, β-strand, tight turns, and loops in specific structural 
classes, which then may be used to provide the most probable secondary 
structure and structural class of a protein (Stultz et al., 1993, 1997, and 
Hubbard and Park 1995; http://bmerc-www.bu.edu/psa/index.html).  

A center that is focused on the prediction of protein structure is the Pro-
tein Structure Prediction Center (http://predictioncenter.llnl.gov/Center-
.html), supported by the National Institutes of Health, National Library of 
Medicine, and the U.S. Department of Energy, Office of Biological and 
Environmental Research. It is a part of the Biology and Biotechnology Re-
search Program at the Lawrence Livermore National Laboratory. The cen-
ter’s goal is to advance the methods of protein structure prediction from 
sequences and to provide the means for objective testing of prediction 
methods via the process of blind prediction. Since 1994, the center has or-
ganized a biannual CASP (Critical Assessment of techniques for protein 
Structure Prediction) event that aims to promote an objective evaluation of 
prediction methods on a continuing basis. The series of CASP experiments 
(from CASP1 in 1994 to CASP5 in 2002) attempts to establish the current 
state-of-the-art in protein structure prediction to identify what progress has 
been made and to highlight where future effort may be most productively 
focused.  

Threading 

More and more emphasis has been placed on tertiary structure prediction 
in the later CASP experiments, indicating that techniques for tertiary struc-
ture prediction are making substantial headway. Since the ways that pro-
tein can fold appear to be limited, there is considerable optimism that 
methods will eventually be found to predict the fold of any protein, given 
just its amino acid sequence. One popular and quite successful method for 
tertiary structure prediction is threading (Lemer et al., 1995; Lathrop et al., 
1998; Mirny and Shakhnovich, 1998; Thiele et al., 1999; Panchenko et al., 
2000; and Mirny et al., 2000).  

In threading, a new sequence is mounted on a series of known folds (a 
sequence-structure alignment) from homologous sequences with the goal 
of finding a fold that provides the best score (lowest energy). Two com-
monly used techniques for deciding whether a given protein sequence is 
compatible with a known fold are the environmental template (or structural 
profile) method (Bowie et al., 1996; Johnson et al., 1996; and Panchenko 
et al., 2000) and the contact potential method (Jones et al., 1992a; Bryant 
and Lawrence, 1993; and Panchenko et al., 2000).  
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In the environmental template method, the environment, e.g., the secon-
dary structure of the buried status, the polarity, the types of nearby side 
chains, and the hydrophobicity, of each amino acid in each known struc-
tural core is determined. The frequencies of different amino acids within 
multiple alignments in different environments are then counted and used to 
create structural 3D profiles. Dynamic programming is used to align a se-
quence to a string of descriptors that describe the 3D environment of the 
target structure, and the new sequence is predicted to have a fold similar to 
that of the target core if a significantly high score is obtained. In the con-
tact potential method, the number of and closeness between amino acids in 
the core are analyzed, and each structural core is represented as a 2D con-
tact matrix. The query sequence is evaluated for amino acid interactions 
that will correspond to those in the core and that will contribute to the sta-
bility of the protein. The most energetically stable conformations are as-
sumed to be the most likely 3D structures. 
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5.1 Introduction 

Given the complexity and gigantic volume of biological data, the tradi-
tional computer science techniques and algorithms fail to solve complex 
biological problems of the real world. However, there are modern compu-
tational approaches called machine learning that can address the limita-
tions of the traditional techniques. Machine learning is an adaptive process 
that enables computers to learn from experience, learn by example, and 
learn by analogy. Learning capabilities are essential for automatically im-
proving the performance of a computational system over time on the basis 
of previous results. A basic learning model typically consists of the follow-
ing four components: 

• learning element, responsible for improving its performance,  
• performance element, which decides the choice of actions to be taken,  
• critical element, which tells learning element how the algorithm per-

forms, and 
• problem generator, responsible for suggesting actions that could lead to 

new or informative experiences (Adeli, 1995; Finlay and Dix 1996; 
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Kuonen, 2003; Narayanan et al., 2002; Negnevitsky, 2002; Nilsson, 
1996; Baldi and Brunak, 2001; and Westhead et al., 2002). 

Machine learning typically can be divided into three phases, as follows: 

1. analysis of a training set of examples and generation of a set of rules 
from training set, 

2. verification of the rules by human experts or automatic knowledge 
based components and 

3. use of the validated rules in responding to some new testing datasets 
(Finlay and Dix 1996). 

There are a number of reasons why machine learning approaches are 
widely used in practice, especially in bioinformatics (Narayanan et al., 
2002; Nilsson, 1996; Baldi and Brunak, 2001; and Westhead et al., 2002) 

• Traditionally, a human being builds such an expert system by collecting 
knowledge from specific experts. The experts can always explain what 
factors they use to assess a situation; however, it is often difficult for the 
experts to say what rules they use, for example, for disease analysis and 
control. This problem can be resolved by machine learning mechanisms. 
Machine learning can extract the description of the hidden situation in 
terms of those factors and then fire rules that match the expert’s behav-
ior. 

• Systems often produce results different from the desired ones. This may 
be caused by unknown properties or functions of inputs during the de-
sign of systems. This situation always occurs in the biological world be-
cause of the complexities and mysteries of life sciences. However, with 
its capability of dynamic improvement, machine learning can cope with 
this problem. 

• In molecular biology research, new data and concepts are generated 
every day, and those new data and concepts update or replace the old 
ones. Machine learning can be easily adapted to a changing environ-
ment. This benefits system designers, as they do not need to redesign 
systems whenever the environment changes. 

• Missing and noisy data is one characteristic of biological data. The con-
ventional computer techniques fail to handle this. Machine learning 
techniques are able to deal with missing and noisy data. 

• With advances in biotechnology, huge volumes of biological data are 
generated. In addition, it is possible that important hidden relationships 
and correlations exist in the data. Machine learning methods are de-
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signed to handle very large data sets, and can be used to extract such re-
lationships. 

Table 5.1. The existing research on bioinformatics that has applied machine learn-
ing techniques. 

Research Area Application Reference 

BLAST http://www.ncbi.nlm.nih.gov/BL
AST/ Sequence alignment 

FASTA http://www.ebi.ac.uk/fasta33/ 

ClustalW http://www.ebi.ac.uk/clustalw/ 

MultAlin http://prodes.toulouse.inra.fr/mult
alin/multalin.html 

Multiple sequence 
alignment 

DiAlign http://www.genomatix.de/cgi-
bin/dialign/dialign.pl 

Genscan http://genes.mit.edu/GENSCAN.h
tml

GenomeScan http://genes.mit.edu/genomescan/ 
Gene finding 

GeneMark http://www.ebi.ac.uk/genemark/ 

Pfam http://www.sanger.ac.uk/Software
/Pfam/ 

BLOCKS http://www.blocks.fhcrc.org/ 
Protein domain analy-
sis and identification 

ProDom http://prodes.toulouse.inra.fr/prod
om/current/html/ home.php 

Gibbs Sampler http://bayesweb.wadsworth.org/gi
bbs/gibbs.html 

AlignACE http://atlas.med.harvard.edu/cgi-
bin/alignace.pl 

Pattern identification 

MEME http://meme.sdsc.edu/meme/webs
ite/intro.html 

PredictProtein 
http://www.embl-
heidelberg.de/predictprotein/ pre-
dictprotein.html Protein folding predic-

tion 

SwissModle http://www.expasy.org/swissmod/
SWISS-MODEL.html 
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• There are some biological problems in which experts can specify only 
input/output pairs, but not the relationships between inputs and outputs, 
such as the prediction of protein structure and structural and functional 
sequences. This limitation can be addressed by machine learning meth-
ods. They are able to adjust their internal structure to produce approxi-
mate results for the given problems. 

Machine learning mechanisms form the basis of adaptive systems. In 
bioinformatics research, a number of machine learning approaches are ap-
plied to discover new meaningful knowledge from the biological data-
bases, to analyze and predict diseases, to group similar genetic elements, 
and to find relationships or associations in biological data. Examples of 
machine learning approaches in bioinformatics research are shown in Ta-
ble 5.1. 

In this chapter, the most popular of machine learning approaches, 
namely, artificial neural networks, genetic algorithms, and fuzzy expert 
systems, are elaborated. The basic background, definition, and models of 
each method are presented. Further, a survey of tools for using the learning 
techniques used in bioinformatics is included. 

5.2 Artificial Neural Network 

The process of learning is a complex phenomenon. Many puzzling ques-
tions arise from of it. How can one recognize the faces of others? How can 
one identify complex patterns from the faces? How does one discriminate 
images and backgrounds? How does one learn a shortcut to go to his or her 
university? In order to answer these questions, one needs to know how the 
brain works. 

The human brain has been studied since the late Middle Ages; however, 
its detailed structure began to be unraveled only in the nineteenth century. 
Neuronists claim that the brain is a collection of about 10 billion densely 
interconnected cellular units called neurons. The structure of a neuron and 
its network is shown in Fig. 5.1. 

Each neuron consists of a cell body called soma, a number of root-like 
extensions connected to a thousand adjacent neurons called dendrites, and 
a single transmission line extending out from the soma called axon. The 
two specialized extensions of a soma are responsible for carrying informa-
tion from/to a cell body. Dendrites bring information to a cell body and 
axons take information away from a cell body. The connection between 



5 Machine Learning in Bioinformatics     121 

two neurons, in particular, between an axon terminal and another neuron, 
is called synapse.  

Fig. 5.1. Biological neural network (Adapted from: http://ffden2.phys.uaf.edu/-
212_fall2003.web.dir/Keith_Palchikoff/Intro_page.html) 

Each neuron uses biochemical reactions to receive processes and trans-
mit information. Neurons communicate with each other through an elec-
trochemical process. This means that chemicals create an electrical signal. 
When a neuron does not send a signal, it is in a resting state. The inside of 
the neuron has a negative electric potential. When a neuron sends a signal, 
it causes a change in the electrical potential of the cell body. The change 
occurs due to the release of chemical substances from the synaptic cell, 
called neurotransmitter. When the potential exceeds a certain threshold, an 
action potential occurs. Consequently, the neuron will fire the electrical 
signal down the axon. The occurrence of action potential can be increased 
or decreased by changing the constitution of various neurotransmitters. 

An essential characteristic of biological neural networks is plasticity, an 
ability of the brain to reorganize with learning, based on experience or sen-
sory stimulation. Scientists believe that there are two types of modifica-
tions that form the basis of learning in the brain, namely, 1) a change in the 
internal structure of the synapses and 2) an increase in the number of syn-
apses between neurons. 
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The natural and power of a biological neural network, in particular, the 
potential of learning process, motivated computer scientists to design and 
develop a new network platform that worked in a way similar to that of the 
biological neurons (Adeli, 1995; Freeman and Skapura, 1991; Haykin, 
1994; Müller and Reinhardt, 1990; and Negnevitsky, 2002). This leads to 
the introduction of Artificial Neural Networks (ANNs). 

An Artificial Neural Network (ANN) is an information processing 
model that is able to capture and represent complex input-output relation-
ships. The motivation the development of the ANN technique came from a 
desire for an intelligent artificial system that could process information in 
the same way the human brain. Its novel structure is represented as multi-
ple layers of simple processing elements, operating in parallel to solve 
specific problems. An architecture of a typical artificial neural network is 
illustrated in Fig. 5.2. ANNs resemble human brain in two respects: learn-
ing process and storing experiential knowledge. An artificial neural net-
work learns and classifies a problem through repeated adjustments of the 
connecting weights between the elements. In other words, an ANN learns 
from examples and generalizes the learning beyond the examples supplied. 
For instance, human beings learn to recognize faces from examples of 
faces. 

Fig. 5.2. Schematic representation of a generic ANN 

Each element (analogous to a neuron) in the network is connected to its 
neighbors with weights (analogous to synapses) that represent the strengths 
of the connections. Typically, a single processing element receives a num-
ber of inputs (analogous to dendrites) through its connection, combines 
them, performs a (non-)linear operation on the result, and then produces 
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the final result (analogous to an axon). The input can be information from 
external environments or outputs of other neurons. The output can be ei-
ther a final solution to the problem or an input to other neurons. Figure 5.3 
illustrates a neuron model, and Table 5.2 shows that the artificial neural 
network concepts are similar to those of the biological brain. 

Fig. 5.3. A neuron model 

The neuron determines its output on the basis of the weighted sum of 
the inputs, a threshold value (θ ), and an activation function. An activation 
function of a neuron can be any mathematical function. In practice, four 
functions are commonly used. They are step function, sign function, sig-
moid function, and linear function. If one chooses a sign function as an ac-
tivation function and the net input is less thanθ , the neuron output is 1; 
otherwise, it is -1. 

Table 5.2. An analogy between the biological and artificial neural networks and 
the functions of their components 

Function of each component Biological 
neural net-
works 

Artificial neu-
ral networks 

Accept Inputs Dendrite Input 

Process the inputs Soma Neuron 

Turn the processed inputs into outputs Axon Output 

Involve learning process Synapse Weight 

To build an artificial network, one must decide which network architec-
ture and learning algorithm should be used. Network architecture tells how 
the neurons are used, and how they are connected in a network. The aim of 
the learning function is to modify the weights of the inputs to achieve the 
desired outputs.  
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Based on the arrangement of the internal nodes in the network layer, the 
neural network architecture can be classified into different types, namely, 
perceptron, feedforward networks, and feedback networks. The simplest 
type of neural network is a perceptron (Rosenblatt, 1958). It consists of a 
single layer wherein weights are trained to produce a correct output when 
presented with inputs. The perceptron is typically used for class classifica-
tion, where the classes are linearly separable, regardless of the type of acti-
vation function. If the classification problem is not linearly separable, the 
perceptron cannot perform classification correctly. Therefore, perceptrons 
are suitable only for simple problems in pattern classification. The limita-
tions of the single layered perceptron were mathematically analyzed. The 
outcome of this analysis was the multilayer perceptron (Minsky and Pa-
pert, 1969). 

The multilayer perceptron expands the basic single layer network by 
having one or more hidden layers. In the multilayer structure, the input 
layer accepts information from the external environment and passes the in-
formation to all units in the first hidden layer. The outputs from the first 
hidden layer are redistributed to the next hidden layer, and so on. The out-
put layer accepts output from the last hidden layer and generates the final 
output of the entire network. 

A feedforward network is a network of neurons that have signals 
traveling from input layer to output layer only. In contrast, feedback 
networks allow signals traveling in both directions (from input layer to 
output layer and vice versa). A type of feedback network is a recurrent 
neural network. 

One important function of the human brain is to collect down and recall 
the memories. This is done with short and long term memories. The human 
memory is associative, that is, people recognize an input pattern by com-
paring it with patterns stored in their memories. If the input pattern is 
noisy, the associative memory returns the closest stored pattern. In other 
words, if a corrupted image is given to a network, the network will auto-
matically reconstruct a perfect image. A recurrent neural network, a varia-
tion of the multilayer perceptron, is able to emulate the associative charac-
teristics. It is a modification to the multilayer neural networks, trained with 
the backpropagation algorithm; that is, a recurrent neural network has 
feedback loops from its outputs to its inputs. As in backpropagation learn-
ing, the feedbacks are used to adjust the weights of inputs. Then the output 
is computed again. The algorithm is repeatedly iterated until output be-
comes convergent. 

Learning in neural networks can be divided into two types: supervised 
and unsupervised learning. In supervised learning, an artificial neural net-
work is trained by an external teacher who presents inputs, weights, and 
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desired outputs to a network. Weights are randomly initialized to the in-
puts of the network to compute the actual outputs. The actual outputs are 
compared to the desired outputs. The weights are then adjusted by the net-
work to produce actual outputs that are close to the desired outputs. The 
input weights are continuously modified until acceptable actual outputs are 
achieved. In contrast, unsupervised learning, also known as self-supervised 
learning, does not require an external teacher. During the training phase, a 
neural network receives a number of inputs, discovers regularities in the 
inputs, and learns how to organize itself. 

With remarkable abilities such as nonlinearity, adaptive learning, self 
organization, real-time operation, very large-scale integrated implementa-
tion, and fault tolerance via redundant information coding, neural networks 
are able to solve complex problems that human and other computer tech-
niques cannot do. For example, neural networks outperform the decision 
tree approach on the same data. However, neural networks have some limi-
tations. For instance, complex neural network models lack explanations to 
interpret the decisions of each node in the network as rules; as testing and 
verification. This problem comes from adaptive learning capability, in 
which a network learns how to solve problem by itself, and its operations 
cannot therefore be interpreted. 

The neural network is one of several machine learning approaches that 
have been successfully applied to solving a wide variety of bioinformatics 
problems. In sequence analysis, ANNs have been applied or integrated 
with other methods or systems. For example, a knowledge-based neural 
network system was applied to analyzing DNA sequence (Fu, 1999). An 
artificial neural network was trained to predict the sequence of the human 
TP53 tumor suppressor gene based on a p53 GeneChip (Spicker et al., 
2002). A multilayered feed-forward ANN was developed as a tool to pre-
dict a mycobacterial promoter sequence in a nucleotide sequence (Kalate et 
al., 2003).  

There are two popular gene finder tools that accommodated ANNs. 
GRAIL (Uberbacher and Mural, 1991) is the first gene finder program, 
which was designed to identify genes, exons, and various features in DNA 
sequences. It uses a neural network that combines a series of coding pre-
diction algorithms to recognize coding potential in fixed length windows 
without looking for additional features. Figure 5.4 shows a snapshot of the 
GRAIL tool screen. 

Another gene finder system is GeneParser (Synder and Stormo, 1993, 
1997). It was designed to identify and determine the fine structure of pro-
tein genes in genomic DNA sequences. It comprises two variations of a 
single layer network, namely, 1) one fully connected and one partially 
connected with an activation bias added to some inputs, and 2) a partially 
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connected two-layer network. Dynamic programming has been used as the 
learning algorithm to train the system for protein sequencing. 

Fig. 5.4. GRAIL gene finding tool (Source from: Presentation slides appeared in 
Bioinformatics Forum, Thailand. 2002) 

ANN has been widely used in protein structural and functional predic-
tion. The prediction of protein secondary structure using neural networks 
was formerly carried out in 1988 (Bohr et al., 1990, and Qian and Se-
jnowski, 1988). However, this has requirements of training several neural 
networks and of adding an extra layer. Much work has been done to im-
prove the effective methods (Baldi, 2000; Fairchild et al., 1995; Riis and 
Krogh, 1996; and Rost and Sander, 1993). Most of the recent methods use 
ensembles of neural networks. 

 ANN has also been used to carry out expression analysis. An artificial 
neural system for gene classification called GenCANS was developed to 
analyze and manage a large volume of molecular sequencing data from the 
Human Genome Project (Wu, 1993, 1996; and Wu et al., 1992). Gen-
CANS is based on a three-layered feed-forward backpropagation network. 
GenCANS was initially designed to classify unknown sequences into 
known classes. There are two extensive works of GenCANS – GenCANS-
RDP (Wu and Shivakumar, 1994) and GenCANS-PIR (Wu, 1995). Gen-
CANS-RDP is the RNA classification system which groups a number of 
small subunit ribosomal RNAs together based on RDP (Ribosomal Data-
base Project) phylogenetic classes. GenCANS-PIR is the protein classifica-
tion system which currently classifies protein sequences into more than 
3,300 PIR (Protein Identification Resource) superfamilies. 
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Unsupervised learning neural networks can be generally categorized 
into the following types: 

• self-organizing map (SOM) (Golub, 1999; Tamayo et al., 1999; Toronen 
et al., 1999),  

• self-organizing tree (SOTA) (Herrero et al., 2001), and 
• adaptive resonance theory (ART) (Azuaje, 2003, and Tomida et al., 

2001).  

Fig. 5.5. The 828 genes of yeast cell cycle were grouped into 30 clusters (source: 
Tamayo et al., 1999) 

They have been used to analyze gene expression data. ART was used to 
show that unsupervised learning neural network tools outperform for the 
analysis and visualization of gene expression profiles. Figure 5.5 shows an 
example result of applying SOM to analyze gene expression data. 
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5.3 Neural Network Architectures and Applications 

Neural networks are parallel and distributed information processing sys-
tems that are inspired by and derived from biological learning systems 
such as the human brain. The architecture of neural networks consists of a 
network of nonlinear information processing elements that are normally ar-
ranged in layers and executed in parallel. This layered arrangement is re-
ferred to as the topology of a neural network. The nonlinear information 
processing elements in the network are called neurons, and the intercon-
nections between these neurons in the network are called synapses or 
weights. A learning algorithm must be used to train a neural network so 
that it can process information in a useful and meaningful way. Neural 
networks are used in a wide variety of applications in pattern classifica-
tion, language processing, complex systems modeling, control, optimiza-
tion, and prediction (Lippman, 1987). Neural networks have also been ac-
tively used in many bioinformatics applications such as DNA sequence 
prediction, protein secondary structure prediction, gene expression profile 
classification, and analysis of gene expression patterns (Wu and McLarty, 
2000). In this section, we provide a review of neural network applications 
in bioinformatics that accommodates the most recent advances. 

A review of neural network architectures and learning algorithms is 
briefly presented in the next section. This is followed by a review of appli-
cations of neural networks in bioinformatics. The reviewed applications 
are then compared and categorized based on the areas of application. 

5.3.1 Neural Network Architecture 

Feed-Forward Neural Networks  

As discussed in section 5.2, a perceptron is the most basic and the simplest 
feed-forward neural network model. It consists of an input layer and a sin-
gle output layer of processing units called nodes. Input values presented to 
neurons in the input layer are mapped directly to neurons in the output 
layer. There are no intermediate processing steps. Each input is associated 
with a weight to reflect the significance of the input to the output. Given a 
set of training patterns that consist of exemplar “input” and “desired out-
put” pairs, the perceptron is trained by feeding the input patterns to it and 
minimizing the error between its outputs and the desired outputs. Since the 
perceptron performs a direct mapping of input to output, it is a linear clas-
sifier, because only its weights define a hyperplane that divides input space 
into regions of pattern classes. The perceptron, therefore is, incapable of 
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performing tasks that require nonlinear mappings between input and out-
put. 

For more complicated problems, a linear hyperplane is not good enough 
as a separator. A nonlinear surface that separates the classes is used in-
stead. This can be achieved by the multi-layer perceptron (MLP), or the 
feed-forward network that consists of three layers of nodes, or neurons. 
Besides having an input layer and output layer, MLP has one (or several) 
hidden layer(s) in the middle. All artificial neural networks have a similar 
structure or topology, as shown in Fig. 5.6. 

xn

x2 

x1 

output 
layer

input 
layer

hidden 
layer

weights

 output 

input 
data

neurons

Fig. 5.6. The architecture of a multi-layer perceptron 

Input data is a long continuous-valued vector that contains n  elements, 
x = (x1, x2,…,xn). The n  elements can be considered as the lengths of the 
inputs, and are determined by the problem specification. Each hidden neu-
ron (i = 1, 2,…,m) stores an exemplar training sample faithfully as its 
weight vector w = (wi,1, wi,2,…,wi,n). A hidden neuron i  is computed from 
the inputs 

,( )i i n n
n

h F w x= ∑ (5.1)

where nx  denotes the nth input and ,i nw  denotes the weights between the 

input and hidden layers. 
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The hidden neurons are then used as inputs for the output y

,( )i i n n
n

y G v h= ∑ (5.2)

where ,i nv denotes the weights between the hidden and output layers. The 

activation function F or G is a sigmoid or logistic function which is usually 
differentiable and contributes to stability in neural network learning (Nara-
yanan et al., 2003a). 

Despite the simplicity of neural network, the summation functions can 
be more complex than just the simple sum of the products of inputs and 
their weights. The specific algorithm to combine neural inputs is deter-
mined by the chosen network architecture and hypothesis. 

Training of Feed-Forward Neural Networks 

Once a network has been structured for a problem specification, training of 
the network is the next step to be followed. The training of the network is 
nothing but finding the weights to minimize possible error. The initial 
weights are allocated randomly. Then, the training, or learning, begins. 
The commonly used algorithm for error is defined by 

21
( )

2 i i
i

E t O= −∑
,

(5.3)

where it is the target output and iO is the actual output. The steps used to 

find the weights for minimizing error are: 

• choose the initial weights randomly for a sample input values,  
• compare the actual output value with the target output value,  
• calculate the error, and 
• modify the weights so that the actual output is closer to the target out-

put next time, with smaller error. 

This process is repeated for all samples in the dataset and results, and 
then repeated until the output error for all the samples achieves an accept-
able low value, which indicates the end point of the training. Once the 
training is finished, testing can be done using the rest of the data set, not 
used during the training phase, to test the trained neural network. If the 
testing is not satisfactory, further modification of the weights has to be 
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done. Otherwise, the output value of the tested data is preserved for any 
decision making.  

5.3.2 Neural Network Learning Algorithms 

There are many different types of neural networks. Based on the type of 
learning, they can be categorized into supervised and unsupervised neural 
networks. 

Supervised Learning Neural Networks 

Most neural networks are trained with supervised training algorithms. This 
means that the desired output must be provided for each input used in the 
training. In other words, both the inputs and the outputs are already known. 
In supervised training, a network processes the inputs and compares its ac-
tual outputs against the expected outputs. Errors are then propagated back 
through the network, and the weights that control the network are changed. 
This process is repeated until the errors are minimized. This means that the 
same dataset is processed many times while the weights between the layers 
of the network are being refined during the training of the network. Figure 
5.7 demonstrate the architecture for a supervised neural network that in-
cludes three layers, namely, input layer, output layer and, a hidden layer in 
the middle. 

Support vector machines (SVMs) are considered supervised computer 
learning methods. Since the support vector machine (SVM) is well known 
as a training algorithm for learning classification from data, SVMs, as one 
of the major supervised neural networks, are widely used for the applica-
tions of classification and pattern recognition problems in bioinformatics 
(Vapnik, 1995, and Cristianini and Shawe-Taylor, 2000). 

The theory of SVMs can be applied to the clustering of yeast microarray 
expression data. When the misclassification rates of SVMs are compared 
with those of other machine learning approaches, SVMs are found to be 
the best performing methods (Brown et al., 2000). In addition to their use 
for evaluating microarray expression data, SVMs have been shown to per-
form well in multiple areas of biological analysis, including detecting re-
mote protein homologies (Jaakkola, 1999) and recognizing translation ini-
tiation sites. SVMs can also be used to analyze expression data (Furey et 
al., 2000). Gene expression data is usually high dimensional data that con-
stitutes a serious problem in several machine learning methods. Dimen-
sionality reduction can be used, but it leads often to information loss and 
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performance degradation. Fortunately, SVMs can overcome this problem 
as they can generalize high dimensional data well (Valentini, 2002). 

xn

x2 

x1 

expected 
output 

input 
data

error backpropagation

change weights

Fig. 5.7. A sample structure of supervised neural network 

Unsupervised Learning Neural Networks 

The learning algorithm used in unsupervised neural networks is an unsu-
pervised learning algorithm. In unsupervised training, the network is pro-
vided only with inputs, while the expected output is unknown. The neural 
network must itself choose features to group the input data without being 
trained (Agatonovic-Kustrin and Beresford, 2000). Once an unsupervised 
neural network has been trained, it must be tested to show that the network 
really represents the data; the data is expected to be well represented in 
clusters. 

A self-organizing network known as self-organizing map (SOM), or 
Kohonen network, is the most common algorithm used in unsupervised 
neural networks (Kohonen, 1982). It is different from the supervised learn-
ing described earlier. The neighborhood of a neuron is used to find and 
group the data that has the similarity. The grouped neurons are arranged in 
a matrix pattern called a map. Every input neuron is connected to other 
neurons in this map. Finally, these neurons form the output of the neural 
network, as shown Fig. 5.8. 
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The SOM consists of an input layer and a competitive output layer. The 
output layer is normally organized into a two-dimensional grid of fully 
connected neurons, as illustrated in Fig. 5.8. The input vectors are fed into 
input layer and mapped with competitive neurons in the output layer. The 
competition learning algorithm in the output layer ensures that similar in-
put vectors are mapped with competitive neurons that are closer to each 
other in the grid than dissimilar ones. In SOM, input vectors in high di-
mensional space are, therefore, projected on to two-dimensional output 
space based on their spatial similarities. Similar input patterns are clustered 
into one small region in the grid of the output layer. 

Fig. 5.8. Self-organizing map (adapted from Narayanan et al., 2003a) 

The SOM is widely used as a data mining and visualization method in 
bioinformatics. It is a more robust and accurate method for the clustering 
of large amounts of noisy data than hierarchical clustering methods are for 
analyzing the gene expression data. In the analysis of the Stanford yeast 
gene expression dataset using SOMs, the best performance of gene expres-
sion analysis was the result of combining clustering and visualization 
methods (Torkkola et al., 2001). SOMs, can be used to reduce the amount 
of data through clustering, and to construct a nonlinear projection of the 
data onto a low dimensional display simultaneously. Therefore, SOMs can 
be used to combine aspects of gene analysis, namely, clustering and visu-
alization. 

Nevertheless, this approach presents several problems (Fritzke, 1994). 
They are as follows: 

• As the SOM is a topology-preserving neural network, the number of 
clusters is randomly fixed from the beginning. Therefore, the clustering 
obtained is not proportionate.  

• The lack of a tree structure makes it impossible to detect higher order 
relationships between clusters. 
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The hierarchical clustering and the SOM can be combined to surmount 
the problems faced by these methods in analysing the gene expression pro-
files and the gene expression data from DNA array experiments (Herrero 
et al., 2001, and Dopazo and Carazo, 1997).  

The advantages of SOTA are as follows: 

• the clustering obtained is proportional to the heterogeneity of the data  
• the binary topology produces a nested structure in which nodes at each 

level are averages of the items below them. 

An alternative way to avoid the problems is to use Fuzzy Kohonen Neu-
ral Networks that combines a Kohonen network and a fuzzy c-means algo-
rithm to keep the advantages and overcome the shortcomings of both tech-
niques (Granzow et al., 2001). 

The advantages of the SOM can be attributed to its ability to map high 
dimensional data onto more comprehensible lower dimensional space and 
to its fast execution. It is potentially very useful for dealing with high di-
mensionality and large-scale databases to extract information from gene 
expression data. However, the effectiveness of its combining with database 
queries warrants further investigation. SOM also has limitations, namely, 
1) no convergence guarantee and 2) the nondeterministic results that de-
pend on learning rates. 

5.3.3 Neural Network Applications in Bioinformatics 

Neural networks have been widely used in biology since the early 1980s 
(Brusic and Zeleznikow, 1999). They can be used to 

• predict the translation initiation sites in DNA sequences (Stormo et al., 
1982).  

• explain the theory of neural networks using applications in biology 
(Baldi and Brunak, 1998).  

• predict immunologically interesting peptides by) combining an evolu-
tionary algorithm (Brusic et al. 1998a) 

• study human TAP transporter (Brusic et al., 1998b).  
• carry out pattern classification and signal processing successfully in bio-

informatics; in fact, a large number of applications of neural network 
can be found in this area 

• perform protein sequence classification; neural networks are applied to 
protein sequence classification by extracting features from protein data 
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and using them in combination with the Bayesian neural network (BNN) 
(Wu et al., 1993, 1995, 1997, 2000). 

• predict protein secondary structure prediction (Qian and Sejnowski, 
1988).  

• analyze the gene expression patterns as an alternative to hierarchical 
clusters (Toronen, Kolehmainen, et al., 1999; Wang, Ma, et al., 2000; 
Bicciato, Pandin, et al., 2001; and Torkkola, Gardner, et al., 2001); gene 
expression can even be analyzed using a single layer neural network 
(Narayanan, Keedwell, et al., 2003b). 

In summary, a neural network is presented with a pattern on its input 
nodes, and the network produces an output pattern based on its learning al-
gorithm during the training phase. Once trained, the neural network can be 
applied to classify new input patterns. This makes neural networks suitable 
for the analysis of gene expression patterns, prediction of protein structure, 
and other related processes in bioinformatics.. 

5.4 Genetic Algorithm 

The genetic algorithm is an artificial system based on biological evolution-
ary mechanisms (Holland, 1975). A modern biological evolutionary theory 
came into existence by incorporating genetics and population biology the-
ory into the classical evolution theory of Charles Darwin (Darwin, 1859). 
It can be defined as the inheritable changes, via genetic materials in a 
population of chromosomes, from one generation to the next generation. 
The main goal of evolution is to produce a population of chromosomes 
with increasing fitness. The fitness is a quantitative measure of the success 
of a chromosome in survival and reproduction. The main processes of 
natural evolution are reproduction of some chromosomes within a popula-
tion, mutation in the DNA sequence within a gene or chromosome of an 
organism to create a new character not found in the parental type, and 
competition and fitness selection to limit expanding populations of differ-
ent species in finite space. 

The recombination (or crossover) first occurs during reproduction, re-
sulting in the combination of genes from parents to form a new chromo-
some. The new chromosome, which consists of genes or blocks of DNA, 
can be mutated. The mutation can be caused, for example, by errors in 
copying genes from parents. These errors change the gene’s position (or 
locus) in the chromosome, and this change is called genetic variation. But 
one might question which parents should be chosen to form a new chro-
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mosome. Naturally, parental chromosomes are selected to produce new 
chromosome according to the fitness of the genotypes. A chromosome 
with higher fitness has a higher chance than other chromosomes of being 
selected to reproduce. Natural evolution is a gradual, continuous, and 
never ending process. 

The biological evolutionary theory inspired computer scientists to de-
velop an intelligent system that is capable of imitating the principles of 
natural evolution.  

An automatic mechanism to adapt and learn is desirable for producing 
good solutions. This is the starting point of a genetic algorithm. 

The genetic algorithm is a search algorithm that operates on pieces of 
information. It is similar to a natural evolutionary process that operates on 
the information stored in genes. In the genetic algorithm, chromosomes are 
represented as binary strings; these strings are modified in the same way 
that populations of chromosomes evolve in nature. The population of 
strings improves its fitness over interactions, and after a number of genera-
tions the population finally evolves to the best solution for a given prob-
lem. In each generation, all strings are evaluated by a fitness function for 
their performance. Based on these evaluations, a new population of strings, 
with well adapted effectiveness, is formed by using genetic operators such 
as selection, crossover, and mutation. 

Fig. 5.9. The illustration showing how crossover and mutation operators work 

The selection operator selects the as many survival chromosomes as 
possible from a given population based on their fitness values. The aim of 
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the selection is to increase the occurrence of fitter chromosomes in the 
population over subsequent generations. There exist a wide number of se-
lection techniques (Forrest, 1985; Goldberg and Deb, 1991; and Grefen-
stette and Baker, 1989); however, a detailed discussion on the selection 
techniques is beyond the scope of this book. Further reading can be found 
in any genetic algorithm book. 

The crossover operator breaks and then swaps some parts of two paren-
tal chromosomes. The mutation operator represents a mechanism through 
which a randomly chosen gene (or several genes) is (are) changed to some 
other gene. The mutation introduces diversity to the population and guar-
antees that the population is not trapped at a local maximum. Figure 5.9 
shows a typical case of crossover and mutation operators.  

As mentioned before, the genetic algorithm simulates the process of 
natural evolution. Analogies between the two can be found in Table 5.3. 

Table 5.3. A comparison of the genetic algorithm and the natural evolutionary 
mechanism 

Natural evolution Genetic algorithm 

Environment Given problem 

Chromosome Binary string 

Fitness of phenotype (probability of 
survival) 

Fitness function 

Locus A position on the string 

Selection, recombination, crossover, 
and mutation  

Genetic operators 

A population of chromosomes that suits 
to the environment 

The optimal solutions to a given 
problem 

The genetic algorithm is a simple computational model compared to the 
natural mechanism; however, complex and interesting structures have been 
developed using genetic algorithms. Most genetic algorithms consist of the 
following steps (Coley, 1999; Ghanea-Hercock, 2003; and Goldberg, 
1989): 

Step 1 (a) Encode the problem variables as a chromosome, representing 
    a fixed-length binary string.
(b) Choose a population size, N. 
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(c) Define a fitness function to measure the probability that a 
chromosome will be selected as a parent chromosome to fur-
ther generate new chromosomes. 

Step 2 Randomly generate a population of chromosomes of size, N.
Step 3 Test each chromosome in the population with the fitness func-

tion. 
Step 4 Perform the following sub-steps until termination condition such 

as specified best fitness values, is satisfied. 
(a) Select a pair of chromosomes from the population with the 

higher fitness value as parent chromosomes for reproduction. 
(b) Apply the genetic operators to selected parent chromosomes 

to create a pair of offspring chromosomes. 
(c) Allow the offspring chromosomes and their parents to form 

the new population. 
(d) Replace the current chromosome population with the new 

population. 
(e) Calculate the fitness value of each chromosome of the new 

population. 
Step 5 Output the optimal solutions to a given problem as the fittest 

chromosomes. 

Genetic algorithms have a number of advantages. 

• A genetic algorithm is a parallel search, that is, in each generation sev-
eral solutions are checked at once. It generates optimized and robust so-
lutions via powerful operators; for example, bad solutions are filtered 
out by selection, and local optimal solutions can be avoided by muta-
tion.  

• A genetic algorithm can provide good solutions even if very little in-
formation about the problem is provided. As a result, genetic algorithms 
are widely used in classification and optimization. 

However there are limitations with the genetic algorithm. 

• Encoding a given problem in a suitable representation (for example, bit 
string) is difficult and often changes the nature of the problem being in-
vestigated. Natural evolution does not always produce a good solution. 
Nor does a genetic algorithm. It frequently converges to a local opti-
mum.  

• A genetic algorithm involves several parameters, such as representation, 
population size, and fitness function. In practice, it is difficult to define 
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or create these parameters due to the lack of guidelines for choosing 
them.  

It is expected that new developments in genetic algorithms may over-
come the limitations. 

Fig. 5.10. The layout of the SAGA algorithm (Notredame and Higgins, 1996) 

The genetic algorithm has been successfully applied for solving many 
practical problems in many disciplines, in particular, in bioinformatics. 
Genetic algorithms have been used to solve multiple sequence alignment 
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problems. One well known approach is SAGA (Ohno-Machado et al., 
2002). SAGA randomly creates an initial population of alignments and 
evolves them in a quasi-evolutionary manner. Through each generation, 
the fitness of the population is gradually improved. The authors show that 
SAGA outperforms the most common solution of the multiple alignment 
problem that uses progressive approach (Barton and Sternberg, 1987; Feng 
and Doolitle, 1987; and Thompson et al., 1994). The layout of the SAGA 
algorithm is shown in Fig. 5.10. The first generation initially creates a ran-
dom population (G0) consisting of a set of alignments. The subsequent 
generations are derived from better parents, as measured by multiple 
alignment quality. When creating children, genetic operators are involved 
in selecting the better parents, in mixing the contents, and in modifying a 
single parent. These steps are repeated iteratively to increase the fitness of 
the population until no more improvement can be made. 

In addition to SAGA, there are a few approaches (Chellapilla and Fogel, 
1999; Isokawa et al., 1996; Nguyen et al., 2002; Wayama et al., 1995; and 
Zhang and Wong, 1997) that have applied genetic algorithms to multiple 
sequence alignment. 

Genetic algorithms have been commonly applied to a set of RNA se-
quences to find common RNA secondary structures (Benedetti and Mo-
rosetti, 1995; Chen et al., 2000; Gultyaev et al., 1995; Shapiro and 
Navetta, 1994; Shapiro et al., 2001; and Wu and Shapiro, 1999). The early 
proposed methods can deal only with a single RNA sequence, while the 
latest improved methods can be used to determine RNA structures in RNA 
sequences. 

The trend to use pure genetic algorithms to analyze gene expression data 
has diminished. The new techniques tend to combine genetic algorithm 
with other computational methods, such as the K-nearest Neighbor Method 
(Li et al., 2001) and the neural network (Keedwell and Narayanan, 2003), 
to solve gene expression problems. They are called neural-genetic hybrid 
methods. Keedwell and Narayanan use a genetic algorithm to select a set 
of genes for classification and use a neural network to determine the fit-
ness of the genes.  

The steps that are to be followed in neural-genetic hybrid methods can 
be seen in Fig. 5.11. Preprocessing, to convert each attribute in the dataset 
into binary field, is the first step. Then, the genetic algorithm initializes a 
random population of chromosomes. The population becomes the input to 
the neural network. The network is trained till the desired output (mini-
mum error) is produced. The error from each chromosome acts as a fitness 
function to determine mutation, crossover, and selection for the next gen-
eration of chromosomes. The generation creation process is iterated until 



5 Machine Learning in Bioinformatics     141 

the maximum number of generations is satisfied, that is, until the correct 
classification of genes is finally discovered. 

Fig. 5.11. The visual layout of neural-genetic algorithm (adapted from Keedwell 
and Narayanan, 2003) 

5.5 Fuzzy System 

A fuzzy system is an expert system that uses a collection of fuzzy mem-
bership functions and rules, instead of Boolean logic, to reason about data. 
It provides a rich meaningful addition to classical logic. The basic con-
cepts of a fuzzy system include fuzzy logic and fuzzy set theory. In order 
to understand a fuzzy expert system, related terminologies and theories are 
first explained. 

A characteristic of human mind is its ability to reason about vague and 
ambiguous terms. For example, today may feel hot because the tempera-
ture is more than 33°C. If the temperature tomorrow is 31°C, human 
senses can immediately interpret it as moderately hot. However, a com-
puter with conventional logic cannot replicate that statement. The reason is 
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that in conventional logic a statement is either true or false, and not multi-
valued or partially true or false. 

There have been attempts to emulate the way human senses work with 
computers so that they are able to respond like human. This is the starting 
point of fuzzy logic. Fuzzy logic is a superset of conventional logic. It can 
describe partial truth or uncertainty. In fuzzy logic, a true statement can 
range from completely true through half truth to completely false. In other 
words, it is possible that a statement is 0.75 true, or not completely true. 
The multivalued logic has been widely studied since the last century, but 
the most significant breakthrough was the theory of fuzzy sets proposed by 
Lotfi Zadeh. Based on fuzzy sets, fuzzy logic can be defined as a set of 
mathematical principles for knowledge representation based on degree of 
membership rather than on crisp membership. 

A crisp set is a set in classical logic where elements either belong or do 
not belong to the set, whereas a fuzzy set is a set in fuzzy logic where 
members have a degree of membership or degree of truth that ranges from 
0 to 1. Let us consider Table 5.4 to make things clear. 

Table 5.4. Crisp and fuzzy membership 

  Degree of membership of “Hot day” 

Day Temperature, º C Crisp Fuzzy 

1 5 0.0 0.0 

2 10 0.0 0.0 

3 25 0.0 0.1 

4 27 0.0 0.3 

5 29 0.0 0.5 

6 30 0.0 0.8 

7 33 1.0 1.0 

8 35 1.0 1.0 

9 40 1.0 1.0 

In crisp set theory, days 1 through 9 fall into only two groups (hot and 
not hot), depending on their temperatures (°C). If the temperature is less 
than 33°C, the day is considered not hot. Unlike crisp set theory, fuzzy set 
theory classifies its members (days) by regarding the degree of truth (hot-
ness). Therefore, there are more than two groups of days. It is a cold day if 
the temperature is less than or equal 10°C and it is hot day if the tempera-
ture is equal to or more than 33°C. For example, days 1 and 2 are hot with 
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0 degree of truth; days 3 through 6 are hot with 0.10, 0.30, 0.50, and 0.80 
degrees of through respectively; and days 7 through 9 are considered hot 
day with 1 degree of truth. The question is how to find the degree of mem-
bership. 

In classical set theory, the degree of membership can be calculated by a 
characteristic function. For example, the crisp set “Hot day” can be defined 
as 

( )
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⎧ ≥

=
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etemperaturif
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331
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The function ( )etemperaturf dayHot  maps each temperature value onto 0 

or 1. In a fuzzy set, the mapping function, called membership function, 
maps each temperature value onto the real interval [0, 1]. In the “Hot day” 
case, the membership function can be defined as 

( )
⎪
⎩

⎪
⎨

⎧

<<
≤
≥

=
331010

100

331

etemperaturifandbetween

etemperaturif

etemperaturif

etemperaturHotdayµ (5.5)

In a manner similar to that of producing crisp and fuzzy sets of “Hot day”, 
crisp and fuzzy sets of “Fine day” and “Cold day”, and their degrees of 
membership, can be obtained as shown in Table 5.5. 

Table 5.5. Crisp and fuzzy set temperatures, with members Cold, Fine, and Hot 

Degree of membership 
  Crisp Fuzzy 

Day Temperature °C Cold Fine Hot Cold Fine Hot 
1 5 1.0 0.0 0.0 1.0 0.0 0.0 
2 10 1.0 0.0 0.0 1.0 0.0 0.0 
3 25 0.0 1.0 0.0 0.8 0.8 0.1 
4 27 0.0 1.0 0.0 0.5 1.0 0.3 
5 29 0.0 1.0 0.0 0.3 1.0 0.5 
6 30 0.0 1.0 0.0 0.1 0.8 0.8 
7 33 0.0 0.0 1.0 0.0 0.0 1.0 
8 35 0.0 0.0 1.0 0.0 0.0 1.0 
9 40 0.0 0.0 1.0 0.0 0.0 1.0 

The characteristic and membership functions that describe how to trans-
late from temperature in value to temperature in words, and vice versa, are 
shown in Fig. 5.12. 
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Fig. 5.12. Characteristic and membership functions of Cold, Fine, and Hot day 

Another important concept of fuzzy set theory is the linguistic variable. 
It is used to construct the fuzzy rules. For example, “Temperature” is 
called a linguistic variable, and “hot”, “fine”, and “cold” are called linguis-
tic values. A simple fuzzy rule can be represented in the following way: 

IF  x is A  THEN  y is B (5.6)

where x and y represent linguistic variables and A and B are linguistic val-
ues. One can use operations, including EQUAL, COMPLEMENT (NOT), 
CONTAINMENT, UNION (OR), and INTERSECTION (AND), to con-
struct a more complex fuzzy rule such as: 

IF (x is A) AND (y is B) AND (…) OR NOT (…) THEN z is Z

IF x is A THEN (y is B) AND (…) AND z is Z
(5.7)
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where x, y, and z are variables and A, B, and Z are values. The IF part of 
the rule is called the rule antecedent and the THEN part of the rule is 
called the rule consequent. If the antecedent part is true with a degree of 
membership, then consequent part is also true with the same degree. The 
outputs of fuzzy sets are aggregated into a single. Then the single output is 
transformed to a single output number. Many researchers have proposed 
techniques (Mamdani and Assilian, 1975) that facilitate the whole process 
from the beginning to the end. The most significant technique is fuzzy in-
ference. Fuzzy inference is a tool used to evaluate a knowledge base. It 
takes a given input and fires an output by using the theory of fuzzy sets. 
Generally, it consists of four steps: fuzzification of the input variables, rule 
evaluation, aggregation of the rule outputs, and defuzzification, as shown 
in Fig. 5.13. 

The development of the fuzzy expert system (FES) is an iterative proc-
ess. A typical process involves the following four steps: 

• determine problem input and output variables and their ranges,  
• define fuzzy sets and construct fuzzy rules,  
• perform fuzzy inference process, and  
• evaluate and tune the system. 

The basic structure of a fuzzy system can be seen in Fig. 5.14. It con-
sists of four basic components: a fuzzifier, an inference engine, a defuzzi-
fier, and a knowledge base. More details of these components are beyond 
the scope of this chapter; however, they can be found in general artificial 
intelligence or soft computing books (Kruse et al., 1994). 

Fuzzy systems have been successfully applied to several areas in prac-
tice. In bioinformatics, fuzzy systems play an important role for building 
knowledge-based systems. Most systems involve fuzzy logic-based and 
fuzzy rule-based models. They can control and analyze processes and di-
agnose and make decisions in biomedical sciences (Adriaenssens et al., 
2004; Boegl et al., 2004; Saritas et al., 2003; Sarkar and Leong, 2003; 
Schneider et al., 2003; Seker et al., 2003; and Virant-Klun and Virant, 
1999).  

A fuzzy expert system for the diagnosis of prostate cancer (Saritas et al., 
2003), has been explained in detail. The authors use prostate-specific anti-
gen (PSA), age, and prostate volume (PV) as input parameters, and pros-
tate cancer risk as output. The input values are converted to the linguistic 
variables, with degree of truth. This conversion is done by the membership 
function. Then, 80 rules are formed. The output of each rule has a degree 
of truth, obtained from fuzzy operation (MIN and MAX). Finally, the 
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fuzzy outputs are converted into real output values. Figure 5.15 shows the 
overview of the FES system and its components. 

Fig. 5.13. The general steps of fuzzy inference 

Fig. 5.14. The basic components of fuzzy expert system 

In addition, fuzzy logic has been recently applied to analyze (Woolf and 
Wang, 2000) and to classify (Ohno-Machado et al., 2002) gene expression 
data. The fuzzy logic-based classifier gives results similar to those of other 
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classifiers, but are much simpler and easier to interpret (Ohno-Machado et 
al., 2002). Fuzzy logic accounts for noisy data from a large number of bio-
logical patterns. 

Fig. 5.15. The structure of the fuzzy expert system (FES) for diagnosis of prostate 
cancer (adapted from Saritas et al., 2003) 
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6.1 Introduction 

Recent advances in high throughput biological research have accelerated 
the accumulation of a wide range of biological data and information at dif-
ferent levels ranging from DNA sequence to metabolic flux. This technol-
ogy-driven discovery science is allowing not only the identification of in-
dividual components and molecules of a biological system, but also the 
characterization of their functions and interactions on a global scale (Lee, 
2001; Ryu and Nam, 2000; and Williams, 1999). A vast amount of bio-
logically relevant information on entire genome sequences, and proteome 
transcriptome and data of various living organisms being generated (Don-
gre et al., 2001; Fraser et al., 2000; Nelson et al., 2000; and Venter et al., 
2001) await the development of new strategies for their integrated analysis. 
The individual components and molecules identified are insufficient alone 
to interpret the global behavior of the biological system. 

As indicated elsewhere (Carlson and Doyle, 2002; Fukuda and Takagi, 
2001; Hanahan and Winberg, 2000; Hartwell et al., 1999; Jordan et al., 
2000; Karp, 2000; Somogyi et al., 1996; and Stelling et al., 2002), the bio-
logical system is complex: interactions between many simple and identical 
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elements, as well as the selective and nonlinear communication of different 
multifunctional elements with others, lead to the complex and coherent be-
havior of the system. Moreover, even in a single cell, various types of bio-
chemical processes are seamlessly integrated for generating mass and en-
ergy (metabolic), transmitting information (signaling), and regulating gene 
expression (gene regulatory) through complex networks and pathways of 
molecular interactions and reactions (Jeong et al., 2000). Thus, system-
level approaches are indeed required to understand its organization in a 
global context, and to eventually discover a true knowledge map for deci-
phering the functions of a living system (Ideker et al., 2001; and Kitano, 
2002a, 2002b); these approaches have collectively been referred to as 
“Systems Biology”. While some formal frameworks have already been 
proposed (Kolpakov et al., 1998; and Rzhetsky et al., 2000), much remains 
to be done to design adequate models for representing, manipulating, and 
simulating the complex biological system (Alur et al., 2002; Endy and 
Brent, 2001; Leung et al., 2001; and Phair and Misteli, 2001). Conse-
quently, an urgent need exists to investigate and integrate the relationships 
among all pathway information, protein interaction data, and biological 
process information for system-level understanding of the biological sys-
tem. 

This systems approach can be extended to the development of biotech-
nology, which we call “Systems Biotechnology”. In other words, all the 
genomic, transcriptomic, proteomic, metabolomic, fluxomic, and other in-
formation and data available in public, and that generated in-house, are in-
tegrated at the system level for the development of complete a parts of 
bioprocesses. This poses a challenge that is reviewed in this chapter by 
presenting frameworks and methodologies. 

6.2 Why Systems Biotechnology? 

Biotechnology is considered one of the core technologies of the twenty-
first century, considering its wide range of potential applications in the 
healthcare, pharmaceutical, chemical, food, and agricultural industries. As 
in other engineering disciplines, it is important to develop low cost and 
high yield biotechnological processes. To achive this goal, the develop-
ment of improved strains by recombinant and other molecular biological 
methods and improvement of fermentation strategies have been subjects of 
significant research focus. However, efforts have not always been success-
ful, due to unexpected changes in physiology and metabolism of host 
strains. Rational metabolic and cellular engineering approaches have been 
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successfully taken in a number of cases to solve these problems, but they 
have been limited to the manipulation of only a handful (usually one or 
two) of enzymes and proteins. Development of high throughput experi-
mental tools enabling thousands of analyses in parallel resulted in rapid 
accumulation of biological data, and provided a foundation for better un-
derstanding of biological processes. This means that biotechnology proc-
esses can be developed in rational and systematic ways (systems biotech-
nology), circumventing traditional “trial and error” approaches. Therefore, 
systems biotechnology will allow strain development based on a global 
understanding of metabolism and process development via upstream-to-
downstream optimization, which will lead to the development of biotech-
nological processes with the high efficiencies. The essence of systems bio-
technology resides in the integration of wet and dry experiments toward a 
goal of rational metabolic design, as shown in Fig. 6.1. 
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Fig. 6.1. Approaches in systems biotechnology. Various components of wet and 
dry experiments can be integrated to eventually allow rational metabolic design 
(shown in the figure) as well as upstream-to-downstream bioprocess optimization 
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6.3 Tools for Systems Biotechnology 

With the advent of high throughput experimental tools such as the auto-
matic genome sequencer, DNA microarray, 2-dimensional gel electropho-
resis, and high performance gas chromatography mass spectrometry 
(GC/MS) and liquid chromatography mass spectrometry (LC/MS), multi-
level data on DNA sequence and gene information of entire organisms 
(genomes), profiles of mRNA expression levels (transcriptomes), protein 
expression levels (proteomes), and metabolites (metabolomes), and 
intracellular flux distributions (fluxomes) are becoming available (Fig. 
6.2). 

Table 6.1. Genome sequence databases. 

Database Description URL 

GenBank 
An annotated collection of all 
publicly available nucleotide 
and protein sequences 

http://www.ncbi.nlm.ni
h.gov 

SWISS-PROT 
Curated protein sequence data-
base with a high level of annota-
tion 

http://www.expasy.org
/sport 

GOLD 
Genomes online database – a 
listing of completed and ongo-
ing genome projects 

http://www.genomeson
line.org 

KEGG 

Kyoto encyclopedia of genes 
and genomes – integrated suite 
of databases on genes, proteins, 
and metabolic pathways 

http://www.genome.ad
.jp/kegg 

BIOSILICO 
Integrated database for the 
analysis of metabolism and 
compound structures 

http://biosilico.kaist.ac.
kr 

6.3.1 Genome Analyses 

With the widespread availability of the automatic high speed genome se-
quencer, whole genome sequencing has become affordable even in a small 
lab. Since the enormous volume of genomic information has been, is, and 
will be accumulated from genome sequencing projects, we are required to 
analyze the functions of predicted genes in a high throughput manner. A 
rapid automatic procedure for finding potential target genes is very attrac-
tive to all biotechnology-based industries, especially to many large phar-
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maceutical companies. However, the accuracy of functional annotations of 
genes in an entire genome is dependent on the applied annotation proce-
dures. For example, there are significant differences between the novel 
genes predicted in the human genome by the International Human Genome 
Sequencing Consortium (HGSC) and Celera Genomics (Hogenesch et al., 
2001). Due to limitations of the methods employed during the annotation 
procedure, genomic data is prone to errors (Devos and Valencia, 2001). 
Therefore, much improvement has to be made in bioinformatics analysis of 
genes and genomes in order to fully exploit the wealthy information in ge-
nome sequences. Furthermore, many of the results predicted by bioinfor-
matics should be verified by wet experiments. Nonetheless, the genome 
sequence is a good starting point for analyzing the metabolism of an entire 
organism and for designing new strategies for biotechnological systems 
development. Several databases useful for genome analysis are listed in 
Table 6.1. 

6.3.2 Transcriptome Analyses 

Based on the availability of complete genome sequences and the develop-
ment of DNA microarray technology, the study of gene expression of the 
model organisms on a genomic scale has become possible. Hence, an 
enormous amount of transcriptome data is being generated while data 
analysis is a bottleneck in transcriptome research (Berkum and Holstege, 
2001). To overcome this problem, various strategies have been proposed. 
At present, clustering algorithms, which group genes showing similar pat-
terns in expression profiles, are frequently employed to simplify analyses 
of large gene expression datasets (Eisen et al., 1998; and Sherlock, 2000). 

DNA microarray technology has been intensively applied to medical 
studies since the physiological changes in normal and diseased cells and 
tissues can be deciphered by following drug targets (Hughes et al., 2000; 
and Marton et al., 1998). Differential or subtractive analyses of gene ex-
pression in drug-sensitive and drug-resistant cell lines or tumors have al-
lowed the identification of genes that are potentially responsible for drug 
resistance, something that had not been recognized previously by tradi-
tional analytical approaches (Roberts, 2000; and Steele et al., 2003). 
Therefore, the mRNA expression profiles in various human cancers, in-
cluding prostate, ovarian, lung, and breast cancers, had been extensively 
studied to find potential diagnostic markers and anticancer drug targets 
(Leerkes et al., 2002; Owens et al., 2002; Primiano et al., 2003; Robinson 
et al., 2003; and Waghray et al., 2001). Transcriptome profiling is increas-
ingly used for understanding the effects of drugs and chemicals on cellular 
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physiology. For example, the effect of cigarette smoking on gene expres-
sion in endothelial cells was also evaluated by DNA microarray, and the 
result indicated that a number of nicotine modulated genes encoding pro-
teins involved in signal transduction and transcriptional regulation were 
identified (Zhang et al., 2001). 

DNA microarray studies enable us to understand the global cellular 
physiologies and metabolisms of living organisms under various environ-
mental disturbances. In this sense, transcriptome profiling of microorgan-
isms is becoming popular for improving the performance in various bio-
technology applications. For example, transcriptome profiling of Bacillus 
subtilis, widely used in bioindustry, was analyzed during glucose limiting 
and oxygen limiting conditions. The results suggested that several hundred 
genes involved in central metabolism, iron uptake, and stress response 
were differently regulated under these conditions, which provided insights 
on the complex regulatory network of B. subtilis (Ye et al., 2000; and Yo-
shida et al., 2001). The mRNA expression profiles of Saccharomyces cere-
visiae at high salinity and high sugar conditions were also examined to de-
cipher physiological changes under these conditions (Erasmus et al., 2003, 
and Yale and Bohnert, 2001). 

As mentioned above, transcriptome analysis can enable identification of 
connections between regulatory circuits and metabolic pathways that have 
previously been unknown. This new information can be used to design 
metabolic and cellular engineering strategies for the improvement of bio-
technological processes such as amino acid, organic acid, and recombinant 
protein production systems. Even though metabolic and cellular engineer-
ing at global level is the ultimate goal of systems biotechnology, we have 
only limited understanding of how to utilize the vast amounts of data. Un-
der the circumstances, we should not be disappointed, as we can still ra-
tionally select local targets from the global scale data, as described below. 
For example, the transcriptome profiles of recombinant Escherichia coli
producing human insulin-like growth factor I fusion proteins (IGF-Is) were 
analyzed (Choi et al., 2003). The transcriptome profiles indicated that the 
expression level of 529 genes were significantly affected by IGF-I over-
production, and among them over 200 genes were repressed during IGF-I 
production. Interestingly, the prsA and glpF genes encoding phosphoribo-
syl pyrophosphate synthase and glycerol transporter, respectively, were 
significantly down-regulated, which suggested a possible limitation of 5-
phosphoribosyl-1-pyrophospahte, the precursor of nucleotides (purine, 
pyrimidine and incotinamide) and amino acids (histidine and tryptophan), 
and glycerol supply. When the prsA and glpF genes were coexpressed in 
recombinant E. coli, a more than two-fold increase of IGF-I concentration 
and IGF-I volumetric productivity could be achieved (Choi et al., 2003). It 
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should be noted that these two genes would have not been the targets of 
metabolic engineering if a global analysis of gene expression was not car-
ried out. 

6.3.3 Proteome Analyses 

Proteome profiling is another important tool for systems biotechnology, 
considering the fact that cellular behavior is more directly influenced by 
proteins rather than by mRNAs. Through proteome analysis, it is possible 
to monitor the presence of large numbers of proteins within a cell or tissue 
and to observe quantitatively how the protein levels change under different 
circumstances (Fig. 6.2). Proteome analysis has many applications in bio-
technology, including the discovery of drug targets, development of diag-
nostic markers, monitoring of intracellular metabolism, and elucidating 
regulatory networks from proteins that undergo coordinated changes of 
expression. 

Fig. 6.2. Tools for Systems biotechnology 

Therefore, proteome profiling has been applied to discover tumor mark-
ers for early detection and diagnosis, and to investigate drug resistance 
mechanisms in various human cancer cell lines (Poland et al., 2002; Ver-
rills and Kavallaris, 2003; and Wu et al., 2002). Among the cancers, breast 
cancer is one of the most intensively studied, through proteomics. It was 
discovered that arylamine N-acetyltransferase-1 (NAT-1) was differen-
tially expressed in normal and breast cancer tissues, indicating its impor-
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tance in the metabolism of breast cancer cell lines. Besides its overexpres-
sion in cancer cell lines, it was reported that NAT-1 was also involved in 
the cytotoxic drug resistance mechanism of some cancer cell lines (Adam 
et al., 2003; and Stein and Zvelebil, 2002). 

Proteome profiling of various human and animal pathogens has also 
been an important research topic. The resistance mechanism of Helico-
bacter pylori strains to metronidazole (MZT), revealed by proteome profil-
ing, indicated that the expression levels of alkylhydroperoxide reductase 
(AHP) isozymes increased over two-fold suggesting its important role in 
MZT resistance (McAtee et al., 2001). Also, the mechanisms for regulat-
ing virulence factors in Bacillus cereus were investigated by proteome pro-
filing (Gohar et al., 2002). The expression level of transcriptional activator 
PlcR was the highest at the stationary phase, under which most of the se-
creted enzymes were putative virulence-related enzymes. Based on this 
finding, the authors were able to significantly reduce or even abolish, the 
secretion of those virulence enzymes by knocking out the plcR gene, sup-
porting the finding that PlcR is a key regulator of virulence in B. cereus 
(Gohar et al., 2002). Similarly, proteome profiling of parasite strains has 
also been intensively studied for the identification of drug targets and elu-
cidations of resistance mechanisms (Drummelsmith et al., 2003; Seeber, 
2003). 

Proteome profiling is a useful tool for the identification of metabolic 
characteristics of microorganisms under varying environmental conditions. 
The proteome profiles of recombinant E. coli overproducing serine-rich 
protein, human leptin, were examined (Han et al., 2003). During human 
leptin overproduction, the levels of heat shock proteins increased while 
those of protein elongation factors, 30S ribosomal proteins, and some en-
zymes in amino acid biosynthesis pathways decreased. Interestingly, the 
expression levels of the enzyme in the serine family amino acid biosynthe-
sis pathways decreased significantly, indicating a possible limitation of 
serine family amino acids. Therefore, improvement of the leptin productiv-
ity through the coexpression of the cysK gene, encoding cysteine synthase 
A, was examined as a new strategy. As a result, the coexpression of the 
cysK gene led to two- and four-fold increases of cell growth and leptin 
productivity, respectively (Han et al., 2003). In addition, it was further 
found that cysK coexpression could improve production of another serine-
rich protein, interleukin-12 β chain, suggesting that this strategy may be 
useful for the production of other serine-rich proteins as well. This exam-
ple demonstrates the power of global analysis, even though our current ap-
plications are limited to the engineering of local metabolic pathways. 
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6.3.4 Metabolome/Fluxome Analyses 

Analysis of intracellular metabolome profiles is a powerful analytical tool 
allowing elucidation of intracellular metabolic conditions (Fig. 6.2). First, 
for the accumulation of metabolome data, various tools such as GC/MS, 
LC/MS, isotope ratio mass spectrometry (IRMS; Demmelmair et al., 1997) 
and gas chromatography/time of flight mass spectrometry (GC/TOFMS, 
Glassbrook et al., 2000) have been employed to quantify hundreds of me-
tabolites. Then, intracellular flux distributions or fluxome data of living 
organisms can be estimated based on the time derivates of metabolite pro-
files (see below for the detail). 

Since the flux distribution directly reflects metabolic conditions of a liv-
ing organism, fluxome analysis is the most appropriate strategy for the es-
timation of metabolic characteristics such as metabolic responses caused 
by environmental and metabolic (genetic) disturbances. In one example, 
the metabolic response to toxic aromatic thiols such as thiophenol and 4-
aminothiophenol was estimated. It was found that glycolysis, hexose mo-
nophosphate shunt, and methamoglobin formation were affected depend-
ing on the level of oxidative stress. Based on these results, it was revealed 
that thiol response mechanisms of human red blood cells are thiol ex-
change with glutathione and reduction of glutathione disulfide by the hex-
ose monophosphate shunt (Amrolia et al., 1989). The effect of epinephrine 
on energy metabolism in human being was also evaluated by fluxome 
analysis (Matthews et al., 1990). Cancer is one of most important research 
areas in biotechnology, and fluxome analysis has been applied to under-
stand metabolic characteristics of various cancer cell lines under various 
conditions. In pancreatic and colonic cancer cells, the glucose uptake rate 
and the lactic acid production rate increased (Li and Adrian, 1999). 

Because fluxome analysis can provide information on intracellular flux 
distribution, it has been widely applied to the estimation of various micro-
bial metabolite production systems. The variation of intracellular meta-
bolic flux distribution during riboflavin production in B. subtilis was esti-
mated (Dauner and Sauer, 2001, and Sauer et al., 1996). Also, the 
metabolic flux distributions in S. cerevisiae during overproduction of for-
eign protein were evaluated (Jin et al., 1997). 

As the genome sequences of a number of organisms has become avail-
able, constructions of in silico metabolic network of living organisms, fol-
lowed by in silico simulations have been carried out to predict metabolic 
characteristics under various conditions. Generally, the flux balance analy-
sis (FBA) technique, which is based on the pseudo steady-state assumption 
or no intracellular accumulation of metabolites, is applied for the in silico
simulation of a metabolic network. As an example, the effects of various 
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single gene mutations on global metabolic characteristics were predicted 
through fluxome analysis using the in silico metabolic network of E. coli.
It was predicted that 15 genes are essential for E. coli to grow from glu-
cose under anaerobic conditions (Edwards and Palsson, 2000). Recently, 
metabolic characteristics of poly(3-hydroxybutyrate) producing E. coli
were reported based on fluxome analysis of an in silico E. coli metabolic 
network; it was found that the Entner-Doudoroff (ED) pathway plays an 
important role in poly(3-hydroxybutyrate) production by supplying precur-
sor metabolites of poly(3-hydroxybutyrate) in a particular E. coli strain ex-
amined. This prediction was verified by wet experiments employing mu-
tant and engineered E. coli strains (Hong et al., 2003). It should be 
mentioned that current FBA is somewhat limited in its accuracy, as it is 
usually carried out by linear optimization (Edwards and Palsson, 2000, and 
Lee and Papoutsakis, 1999). Thus, improvement of mathematical analysis 
and application of more appropriate constraints are under investigation to 
make FBA a robust tool. 

These days, GC/MS- and NMR-based flux analyses are becoming more 
popular, considering their advantages, such as high sensitivity and direct 
quantification of flux distributions. Recently, the responses of intracellular 
metabolism of E. coli to mutations in phosphoglucose isomerase and glu-
cose-6-phosphate dehydrogenase were examined through a 13C carbon 
substrate based fluxome analysis (Hua et al., 2003). Similarly, metabolic 
characteristics of industrial strain Corynebacterium glutamicum, which 
produces glutamate and lysine, were uncovered by a 13C-labelling fluxome 
analysis (de Graaf et al., 2001; Sahm et al., 2000; and Wittmann and Hein-
zle, 2001). 

6.4 Integrative Approaches 

Due to the complexities of metabolic reactions and regulatory networks in 
living organisms, there is widespread belief that any of transcriptome, pro-
teome, and fluxome data alone may provide incorrect information on cellu-
lar physiology and metabolism (Brent, 2000; Delneri et al., 2001; and 
Nielsen and Olsson, 2002). This perception arises from low correlations 
between levels of mRNA expression, protein expression, and flux distribu-
tion. Therefore, to understand the global cellular functions simultaneously 
at multiple controlling steps, combined analysis in an integrative manner is 
essential (Eymann et al., 2002; Phelps et al., 2002; Shimizu et al., 2002; 
and Yoshida et al., 2001). 
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Fig. 6.3. AN integrated view of transcriptome and proteome profiles of E. coli 
during HCDC. The X axis denotes cell concentration (g DCW/L) and the Y axis 
denotes expression level in log2 scale for transcriptome (red) and in absolute value 
of volume % for proteome (blue). Gene names are colored red only when a tran-
scription level is detected; otherwise, they are colored blue [reproduced from 
Yoon et al., 2002, with permission] 

Recently, the integrated view of transcriptome and proteome profiles of 
E. coli during fed-batch fermentation by exponential feeding of nutrients, 
until cell density reached 74 g dry cell weight/L was reported (Yoon et al., 
2002). A large-scale cultivation process employing high cell density cul-
ture techniques has usually been applied to produce biomaterials and bio-
chemicals in large quantities (Lee, 1996). However, high cell density culti-
vation causes changes in physiology and metabolism of host strain and 
then often leads to reduced production yield in an unexpected way. The re-
sults of analyses indicated that the expression of genes of TCA cycle en-
zymes, NADH dehydrogenase and, ATPase was up-regulated during the 
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exponential fed-batch period and was down-regulated afterward (Fig. 6.3). 
On the other hand, the expression of most genes involved in glycolysis and 
pentose phosphate pathway was up-regulated at the stationary phase. It 
was also found that the expression of phosphate starvation genes was most 
strongly up-regulated toward the end of cultivation, and that σE (rpoE)
plays a more important role than σS (rpoS) at the stationary phase (Lee, 
1996). These results, obtained by the combined analysis of transcriptome 
and proteome, provided valuable information about physiological and 
metabolic changes of E. coli during the high cell density culture, which 
will be useful in designing metabolic engineering and fermentation strate-
gies for the production of recombinant proteins and metabolites by a high 
cell density culture of E. coli. In another study, transcriptome and pro-
teome profiles of a threonine overproducing mutant E. coli strain was re-
ported (Lee et al., 2003). It was observed that genes involved in glyoxylate 
shunt, TCA cycle, and amino acids biosynthesis were overexpressed, while 
ribosomal protein genes were down-regulated. 

To date, only a few examples of combined analysis of transcriptome and 
proteome have been reported. This will change as the methods for mean-
ingfully linking these expression data with fluxome data becomes avail-
able. 

6.5 In Silico Modeling and Simulation of Cellular 
Processes 

As an alternative to in vivo/in vitro experiments for generating new knowl-
edge in systems biotechnology, in silico modeling and simulation of cellu-
lar processes render it possible to predict the behavior of cells and organ-
isms in response to genetic and environmental changes. Such in silico
experiments, as pre-steps of real process development, can help biochemi-
cal engineers determine which genes or pathways should be manipulated 
to achieve improved properties for the cell. In spite of their benefits to bio-
technology development, they cannot be truly implemented until a logical 
approach is developed for circumventing the combinatorial complexities 
involved in identifying biochemical or metabolic pathways in modeling in-
tracellular metabolism. 

Several approaches for quantitative in silico simulation of metabolic 
systems have been developed not only to understand the metabolic status, 
but also to design the metabolic engineering strategies; they include struc-
tural or topological pathway analysis (Schuster et al., 2000, and Simpson 
et al., 1999), flux-based model approaches such as metabolic flux analysis 
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(MFA), metabolic control analysis (MCA), and kinetics-based modeling 
for dynamic simulation (Table 6.2). 

Table 6.2. Comparison of dynamic and static modeling methods. 

 Model 
required 

Requirements   

Topological 
pathway 
analysis 

Stoichiometric 
model 

Stoichiometric 
reactions 
Mass conserva-
tion 

Elementary 
modes 
Extreme 
pathways 
Independent 
pathways 

Network 
structure 

Metabolic 
flux analy-
sis 

Stoichiometric 
model 

Flux measure-
ments (LC*, 
GC/MS*, 
NMR*) 

Gross error 
detection 
Flux distri-
bution 

Flux 
distribution 

Metabolic 
control 
analysis 

Stationary 
Mechanistic 
model 

Rate control-
ling steps 
Metabolite 
pool control-
ling steps 

Pathway 
regulation 
MCA* 
coefficients 

Dynamic 
simulation 

Kinetic model 

Enzyme kinet-
ics (kinetic pa-
rameters) 
ODE* or 
DAE* solver 

Dynamic 
behavior 

System 
dynamics 

*Abbreviations: LC, liquid chromatograph; GC/MS, gas chromatograph/mass 
spectrometer; NMR, nuclear magnetic resonance; MCA, metabolic control analy-
sis; ODE, ordinary differential equation; DAE, differential algebraic equation. 

6.5.1 Statistical Modeling 

Among the available approaches for rational analysis of metabolic path-
ways, MFA is the most widely adopted one: it requires the least amount of 
information to quantify and analyze the metabolic system. Basically, under 
the pseudo steady-state assumption, MFA starts by constructing a 
stoichiometric model based on genome and metabolic information. In such 
a model, the relationships among all metabolites (intermediates) and reac-



168 Sang Yup Lee et al. 

tions are balanced in terms of stoichiometry. Flux distribution is then cal-
culated by matrix operations in the case of determined or overdetermined 
systems. If the resultant balanced reaction model is underdetermined in 
calculating the flux distribution due to insufficient measurements or con-
straints, the unknown fluxes within the metabolic reaction network are 
evaluated by means of FBA based on linear programming (LP), subject to 
the constraints pertaining to mass conservation, reaction thermodynamics, 
and enzymatic reaction capacity, as described elsewhere (Edwards and 
Palsson, 2000, and Lee and Papoutsakis, 1999). It should be noted that al-
though FBA has been well established theoretically and experimentally, 
several issues still remain to be overcome. The problems are due to the 
availability of limited experimental observations and nonunique LP algo-
rithms, resulting in different optimal solutions. In particular, multiple solu-
tions may arise where different flux patterns occur for the same external 
conditions (Table 6.2). 

Fig. 6.4. Screen shot of the flux analysis part of MetaFluxNet. Flux distributions 
can be interactively determined and dynamically visualized via a user-friendly in-
terface 

A number of computer programs have been developed for analytical and 
computational implementations. An effort for establishing the steady-state 
simulation program was initiated by LabVIEW (Regan and Gregory, 
1995). Since then, appreciable progress has been made through the devel-
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opment of a number of programs. They include FBA (http://gcrg.ucsd. 
edu/downloads/index.html), FluxAnalyzer (Klamt et al., 2003), Fluxmap 
(http://www.biotecnol.com), INSILICO discovery (http://www.insilico-
biotechnology.com/products_en.html), and Metabologica (http://www-
.metabologica.com). Recently, MetaFluxNet, which is a stand-alone pro-
gram package for the management of metabolic reaction information and 
quantitative flux analysis, was developed (Lee et al., 2003). It allows users 
to interpret and examine metabolic behavior in response to genetic and/or 
environmental modifications (Fig. 6.4). As a result, quantitative in silico
simulations of metabolic pathways can be carried out to understand the 
metabolic status and to design the metabolic engineering strategies. The 
main features of the program include a well developed model construction 
environment, a user-friendly interface for MFA, comparative MFA of 
strains having different genotypes under various environmental conditions, 
and automated pathway layout creation. The usefulness and functionality 
of the program are demonstrated by applying it to the simulation of meta-
bolic pathways in E. coli (Lee et al., 2003). 

6.5.2 Dynamic Modeling 

Considering the time variable nature of metabolism and the regulation 
mechanism, various quantitative methodologies such as MCA (Fell, 1997), 
biochemical systems analysis (Voit, 2000), and node flexibility analysis 
(Stephanopoulos and Vallino, 1991) were developed to simulate intracellu-
lar metabolism. In addition, such regulatory aspects of metabolic networks 
were also investigated in-depth in connection with the optimization of their 
architectures (Hatzimanikatis et al., 1999). MCA is a statistical modeling 
technique that can be used to understand the control of metabolic pathways 
and pathway regulations. It has become the most widely used tool to gain a 
quantitative understanding of metabolic networks. MCA allows us to un-
derstand how metabolic fluxes are controlled by certain enzyme activities 
and metabolite concentrations. The major result of MCA is that the control 
of a complex metabolic network is usually distributed over many enzy-
matic steps in a given pathway. This means that there is little chance that a 
single genetic modification will result in a large alteration of the flux dis-
tribution (Table 6.2). 

When a steady state is not assumed, and the profile of each reaction rate 
is determined with time changes, intensive mathematical computing power 
is needed to solve ordinary differential equations (ODEs). Dynamic simu-
lations can be done using ODE solvers, but the amount of calculation re-
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quired becomes easily unmanageable as the number of reactions in a meta-
bolic network increases (Wiechert, 2002). 

A number of computer programs have been developed for dynamic 
simulation and calculation of MCA coefficients – MetaModel (Cornish-
Bowden and Hofmeyr, 1991), SCAMP (Sauro, 1993), Gepasi (Mendes, 
1997), and MIST (Ehlde and Zacchi, 1995). Among these programs, user-
friendly Gepasi is widely used for dynamic simulation as well as for com-
mon tasks, and Gepasi has recently been upgraded to version 3.30. 
DBSolve (Goryanin et al., 1999) provides an integrated environment for 
metabolic, enzymatic, and receptor-ligand binding simulation. As for 
whole cell simulation, the Virtual Cell (Loew and Schaff, 2001) and E-
CELL (Tomita, 2001) have demonstrated the value of biological modeling 
in understanding propagation of in silico metabotropic calcium waves in 
human neuroblastoma cell and erythrocyte physiology, respectively. 

6.6 Conclusion 

Modeling and simulation of cellular process are invaluable for organizing 
and integrating available metabolic knowledge and designing the right ex-
periments. Simulation of biological systems through metabolic modeling 
can provide crucial information concerning cellular behavior under various 
genetic and environmental conditions, thus suggesting various strategies 
for the development of efficient biotechnology processes. The current pre-
dictive power of biological simulation is, however, limited by insufficient 
knowledge of global regulation and kinetic information, and thus in silico
design-based process development might seem to be unrealistic. However, 
considering the fact that the currently widespread simulation of electrical 
circuits and aircraft design had also been criticized for similar reasons in 
their emerging days, it is expected that increased accuracy and validity of 
biological simulation will be achieved in the near future; the accumulation 
of large amounts of global scale data from genomics advances in simula-
tion methods will make this true. 

Systems biotechnology is the way biotechnology should be developed 
and practiced from now hence. Upstream (strain, cell, and organism devel-
opment), midstream (fermentation and other unit operations) and down-
stream processes of biotechnology will benefit significantly from adapting 
systems biotechnological approaches. The cases of mid- to down-stream 
bioprocesses resemble the systems engineering approach that has been 
successfully applied in chemical industries (the core subject of chemical 
engineering). Now it is time to adapt systems biotechnological approaches 



6 Systems Biotechnology: a New Paradigm in Biotechnology Development    171 

for developing upstream processes such as strain development, which will 
ultimately lead to successful biotechnology development when combined 
with systems engineering of mid- to down-stream processes. This is Sys-
tems Biotechnology! 
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7.1 Introduction 

With the rapid increase in biological knowledge about cellular processes, 
systems biology inevitably requires computational environments in which 
we can understand a cell as a system and predict its behavior for hypothe-
sis generation and further experimental investigation. Related to this, par-
ticularly needed is software with which users in the fields of biology and 
medicine can, by themselves, model and simulate biological processes in 
the cell by compiling biological knowledge and analyzing experimental 
data. Various biological processes have received attention for modeling 
and simulation. Especially, gene regulatory networks, metabolic pathways, 
and signal transduction cascades are considered important basic biological 
processes for systemic understanding. 

In 1999, we anticipated the methodological change in biology and 
medicine due to the emergence of systems biology, and started a software 
development project which is to attain the following objective: 

“To create concepts for modeling and develop a software environment 
with which large-scale complicated biological processes can be modeled, 
simulated and analyzed as easily as possible by users who are familiar with 
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biological entities and processes but not necessarily familiar with the de-
tails of the modeling architecture.” 

In 2003, on the other hand, the US Department of Energy has started the 
Genomes to Life (GTL) project (http://www.doegenomestolife.org/.). It in-
cludes a goal similar to our stated objective to “develop the computational 
methods and capabilities to advance understanding of complex biological 
systems and predict their behavior”. The GTL project shall surely enhance 
the computational strategy in systems biology and will prove that this di-
rection is essential to biology. 

In order to pursue the above objective, we investigated (i) modeling of 
biological processes, (ii) simulation of biological processes, (iii) visualiza-
tion of their simulations, and (iv) integration of existing biological path-
way databases for modeling, and obtained a series of results and software 
(Doi et al., 2004a, 2004b; Matsuno et al., 2000, 2001, 2003a, 2003b, 
2003c; Nagasaki 2003, 2004, 2004a, 2004b, 2004c; Nakano et al., 2002; 
http://genomicobject.net/public/BiotechBook2004/code/; http://Genomic 
Object.net/.; and http://www.doegenomestolife.org/.) that could achive our 
objective. Namely, we have developed the applications Genomic Object 
Net (GON) and GONML for (i) and (ii), GON Visualizer for (iii), and 
BioPathway Executer (BPE) and BPE Online System (BPEOS) for (iv). 
For modeling, we have defined the new concepts of hybrid functional Petri 
net (HFPN) and hybrid functional Petri net with extension (HFPNe) as the 
architecture for modeling, so that biological processes can be modeled and 
simulated in a suitable manner. GON employs the architecture of HFPNe 
for implementation. This paper presents some details of these contribu-
tions. 

First, architecture is required for modeling and simulation of biological 
processes. In 1999, we investigated software tools and methods for model-
ing biological pathways to develop an architecture which is most suited to 
our objective. At that time, there were ODE-based attempts to modeling 
chemical reactions, e.g., Gepasi (Mendes, 1993), E-Cell (Tomita et al., 
1999) and others, e.g. Lisp based architecture QSIM (Kuipers and Shults 
1994) and the π-Calculus-based architecture Bio-Calculus (Nagasaki et al., 
1999, and Onami et al., 2001). Unfortunately, applications based on these 
architectures are not considered acceptable for our objective. This is due 
not only to their poor GUI interfaces but also to some mathematical re-
quirements arising from the architectures themselves that are not relevant 
to biology and not acceptable to users. However, we found that architec-
tures based on Petri nets might be suited to our objective because of their 
intuitive graphical representation and their capabilities for mathematical 
analyses (Reisig and Rozenberg, 1998a, and Reisig and Rozenberg, 
1998b). 



7 Computational Modeling of Biological Processes 181 

At the initial stage of our research, we employed an existing Petri net 
called hybrid Petri net (HPN) (Alla and David, 1998, and Drath, 1998, 
1999) and could successfully model and simulate the gene regulatory net-
work of λ phage (Matsuno et al., 2000). HPN allows us to model this com-
plicated regulatory network easily and intuitively. However, in the case of 
the glycolytic pathway of Escherichia coli, we found that HPN is not good 
at modeling the biological process intuitively. This motivated us to extend 
the HPN architecture to HFPN (Matsuno et al., 2000). With HFPN, we 
have modeled and simulated various biological processes, including the 
glycolytic pathway of Escherichia coli, the gene regulation of circadian 
rhythms in Drosophila, the boundary formation by notch signaling in Dro-
sophila (Matsuno et al., 2003b), and the apoptosis induced by Fas ligand 
(Matsuno et al., 2003c; http://GenomicObject.net/.). 

In HFPN, we assign an integer or real variable to a biological entity 
such as a protein to represent its quantity or density. The speed of a reac-
tion between biological entities is specified as a function of the variables 
assigned to the entities. However, there are other biological processes 
which are not efficiently modeled with HFPN. For example, DNA se-
quences are not directly handled with HFPN since it does not allow us to 
assign a string variable. The investigation of more complex biological 
processes led us to extend the HFPN architecture to include data types 
such as string, boolean, list, pair, and object. This exten-
sion led to the concept of HFPNe. GON, with the HFPNe archtecture (Na-
gasaki et al., 2004b) makes it feasible to model and simulate biological 
processes such as the transcription process from DNA to mRNA in bacte-
ria, the alternative splicing process in the DSCAM gene in Drosophila, the 
translation process from mRNA to protein of gene trpL in E. coli, the 
translation process with frameshift in HIV-1 RNA, complex carbohydrate 
synthesis, Huntington’s disease model, and protein modification of gene 
p53 (Nagasaki 2004, and Nagasaki et al., 2004a). 

Modeling and simulation of complex biological processes can be well 
treated with GON. However, GON is not enough for our objective from 
the viewpoint of simulation analysis. For visualization, the simulation of a 
model created with a graphical model canvas can be viewed only as a 2D 
time course graph. The situation is more or less similar for other applica-
tions (see Table 7.13 for comparison). In contrast, sophisticated animations 
of simulation states are very informative for evaluating and tuning models. 
For this, we have developed the GON Visualizer (Nagasaki et al., 2004b). 
By writing an XML document for the GON Visualizer, users can realize a 
personalized animation for simulation. 

With the GON and GON Visualizer, users can, for a target biological 
process, model, simulate, and create personalized visualization for biologi-



182 Masao Nagasaki et al. 

cal process simulation. However, users need to create all the biological 
processes from scratch. On the other hand, pathway databases such as 
KEGG (Kanehisa and Goto, 2000) and BioCyc (Karp et al., 2002, 2002) 
compile a large number of static biological pathway models with bio-
chemical information which are not directly simulatable. We have there-
fore developed a software BPE (Nagasaki et al., 2003, 2004c) that suitably 
reconstructs pathway information from KEGG and BioCyc for simulation. 
With this aim, we have developed a reconstruction method for biological 
pathways in KEGG and BioCyc by extensively using the HFPNe architec-
ture for modeling and the flexible features in the graphical model editor on 
GON. We have also develop an online system of BPE called BPEOS (Na-
gasaki, 2004; http://bpe.genomic object.net/). 

Thus, the project started in 1999 has contributed to the development of a 
software environment mentioned in the objective1. These products have 
been used in some biology laboratories. This fact suggests that the soft-
ware environment is useful for research in biology and medicine. 

The outline of this chapter is as follows: 
Section 7.2 surveys several kinds of Petri nets – Petri net (Reisig and 

Rozenberg, 1998a, 1998b), timed Petri net (Reisig and Rozenberg, 1998a, 
1998b), continuous timed Petri net (David et al., 1987), and hybrid Petri 
net (Alla and David, 1998)) – and discusses the advantages and limitations 
when biological processes are modeled with these Petri nets. Then, in Sec-
tions 7.3 and 7.4, we define HFPN and HFPNe, which inherit the features 
of hybrid object net (Drath, 1998), hybrid Petri net (Alla and David 1998), 
and hybrid dynamic net (Drath, 1998) in order to model and simulate bio-
logical processes that are difficult to handle with other Petri nets. 

In Subsections 7.5.1 through 7.5.4, we describe how we can use HFPN 
and HFPNe to model four biological processes – (a) translation of mRNA - 
alternative splicing, (b) translation of mRNA - frameshift, (c) Huntington’s 
disease model, and (d) protein modification - p53 – and show the usability 
of HFPN and HFPNe for modeling. The differences between HFPNe and 
other high-level Petri nets, OCP-nets (Maier and Moldt 2001), and Refer-
ence nets (Kummer, 2001) are discussed in Section 7.6. 

Section 7.7 implements modeling/simulation software, Genomic Object 
Net (GON), with the HFPN/HFPNe architecture, and develops an XML 
format for modelings/simulation of biological processes named GONML. 
Subsections 7.7.3 and 7.7.4 compare other modeling and simulation soft-
ware – Cell Designer (http://sbserv.symbio.jst.go.jp/), E-Cell (Tomita et 

1 GON and Visualizer have been commercialized in 2003 as Cell IllustratorTM 
and Cell AnimatorTM from Gene Networks Inc. (http://www.gene-
networks.com/) 
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al., 1999), Virtual Cell (Schaff et al., 1997), Gepasi (Mendes, 1993), Path-
Pursuit (http://www.scbio.co.jp/products/pathpursuit/index.html) – and 
XML formats of biological processes – SBML (Hucka et al. 2003) and 
CellML (http://www.cellml.org/) – and discusses the advantages of GON 
and GONML over the software and XML formats. 

Section 7.8 introduces the importance of animations for biological proc-
esses that can easily and effectively visualize the simulation results, espe-
cially of GON in Section 7.7, develops animation software, Visualizer, for 
biological processes, and describes its usage with seven biological proc-
esses, transcription, translation, repression, expression, binding, degrada-
tion, and translocation. The last section discusses the effectiveness of 
Visualizer in education and research in molecular biology. 

Section 7.9 discusses the importance of software that automatically cre-
ates executable models of biological processes from pathway databases. A 
new database is developed that sorts out and compiles existing pathway 
databases, KEGG, BioCyc, and BRENDA (Schomburg et al., 2002), and 
develops an application, Biopathway Executer (BPE), that creates execu-
table pathways in the GONML format while inheriting the original cus-
tomized pathway views of the databases. We also supply an online service 
with BPE, BPE Online Service (BPEOS). 

Finally, Section 7.10 summarizes the sofware environment that consists 
of applications (GON, GONML, GON Visualizer, BPE, BPEOS) with 
their architectures (HFPN/HFPNe), and describe future research issues. 

7.2 Hybrid Petri Net and Hybrid Dynamic Net 

Petri net is a mathematical model for representation and analysis of con-
current processes. The original Petri net was proposed in 1962 by Petri 
(Reisig and Rozenberg, 1998a), and since then various types of Petri nets 
have been proposed. In this section, we informally review the notions of 
the original Petri net, the timed Petri net (Reisig and Rozenberg, 1998a), 
the continuous Petri net (David and Alla, 1987), and the hybrid Petri net 
(Alla and David, 1998). 

In general, a Petri net (PN) is a finite network consisting of the follow-
ing four kinds of elements (see Fig. 7.1): (1) place, (2) transition, (3) arc, 
and (4) token. A place can hold tokens as its value, and we call their quan-
tity the mark of the place. We denote the set of places by E. A marking of 
E is a mapping that assigns a mark (the quantity of tokens) to each place. 
An arc is assigned a nonnegative number called the weight. A transition
has arcs coming from places and arcs going out from the transition to 
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places. A transition with these arcs defines a firing condition in terms of 
the values of the places where the arcs are attached. After firing, the marks 
of the places are updated according to the weights assigned to the arcs. 

  (a)     (b) 

Fig. 7.1. A graphical representation of a TPN (left window) which is comprised of 
places e1, e2, and e3, transition p1, and three arcs, where place, arc, and transition 
are represented by the symbols for “circle”, “arrow”, and “filled rectangle”, re-
spectively. Places e1 and e2 have 10 tokens each and place e3 has no token. The 
three arcs have weights 1, 2, and 1. The delay of transition p1 is 1. The right win-
dow shows a 2D time series graph that plots the simulation result of this TPN 
started from the initial marks 

A timed Petri net (TPN) is a Petri net which counts time and allows the 
delay in firing. Figure 7.1(a) shows an example of a TPN with which we 
shall explain some concepts related to TPNs. This TPN consists of three 
places, e1, e2,and e3, one transition, p1, and three arcs, (e1, p1), (e2, p1) and 
(p1, e3). The arcs are assigned constant values called weights, w(e1, p1) = 1, 
w(e2, p1) = 2, and w(p1, e3) = 1, respectively. Transition p1 is assigned a 
constant value called the delay, d(p1) = 1. Since the time is counted in 
TPN, the marking is parametrized with time t as M(t). Then, the mark of 
place ei at time t is denoted as M(ei, t). The marking at time 0 is called the 
initial marking, and each mark at time 0 is called the initial mark. The ini-
tial marks of e1, e2, and e3 are 10, 10, and 0, respectively. We say that tran-
sition p1 is triggered at time t if the marks M(e1, t) and M(e2, t) of e1 and e2

at time t satisfy the firing conditions M(e1, t) ≥ w(e1, p1) and M (e2, t) ≥
w(e2, p1 ). The marking M(t) at time t is calculated as follows for t ≥ 1. Re-
call that d(p1 ) = 1 for transition p1. This means that p1 can fire at d(p1)
time after it is triggered. Formally, if transition p1 is triggered at time t − 
d(p1), it can fire at time t, and the marks are updated at time t as M(e1, t) = 
M(e1, t − d(p1)) − w(e1, p1) and M(e2, t) = M(e2d(p1)) − w(e2, p1), and the 
weight w(p1, e3) is added into M(e3, t), i.e., M(e3, t) = M(e3, t − d(p1)) + 
w(p1, e3). For example, at time t = 1, the transition p1 fires and all places 
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that are connected to the transition change their marks, i.e., M(e1, 1) = 
M(e1, 0) − w(e1, p1) = 9, M(e2, p1) = M(e2, 0) − w(e2, p1) = 8, and M(e3, 1) = 
M(e3, 0) + w(e3, p1) = 1. With similar steps, the marks of places at time t
can be calculated and plotted, as in Fig. 7.1(b). 

Using the delay mechanism, a biological process that consists of proc-
esses with various time intervals can be easily modeled. For example, in E. 
coli the transcription rate of a gene with strong promoter regions can be 
one mRNA molecule every two seconds, while the frequency of a gene 
with weak promoter regions can be one mRNA molecule every ten min-
utes (Berg et al., 2002). 

With the concept of time in TPN, we can model some chemical reac-
tions. But places of TPN can take only nonnegative integers for their 
marks. It is an unfavorable feature when biological transitions require 
some real numbers for their modeling. Thus, an enhanced Petri net that can 
deal with real numbers is necessary. 

  (a)     (b) 

Fig. 7.2. A graphical representation of a CTPN (left window), comprised of places 
e1, e2, and e3, transition p1, and three arcs, where place, arc, and transition are rep-
resented by “double circle”, “arrow”, and “unfilled rectangle”, respectively. The 
marks of places e1and e2 are both 10.0, and the mark of place e3 is 0.0. The 
weights of arcs (e1, p1), (e2, p1), and (p1, e3) are 0.0, 1.0, and 1.0, respectively, and 
their speeds are 1.0, 2.0, and 1.0, respectively. The right window shows a 2D time 
series graph that plots the simulation result of this TPN started from the initial 
marks 

The Petri net was used to model metabolic pathways where places rep-
resent biological compounds (metabolites), transitions represent chemical 
reactions between metabolites that are usually catalyzed by a certain en-
zyme, and tokens indicate the presence of compounds (Reddy et al., 1993). 
This approach is based on the condition that event mechanisms and discus-
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sions are based only on qualitative aspects. That is, a place having tokens 
represents only the presence of the corresponding compound in the place, 
no matter how many tokens are contained in the place. This approach was 
expanded to model metabolic processes (Hofestädt, 1994). Hofestädt and 
Thelen (1998) tried to make quantitative simulations by using the self-
modifying Petri net model (Valk, 1978) where the number of tokens in a 
place is used to represent the level of concentrations of the corresponding 
compound. The main feature of the self-modifying Petri net is that the 
value of a place can be used as a parameter to the formula describing the 
weight on the arc from the place that represents the threshold and con-
sumption of tokens for firing. With this modification, biochemical proc-
esses are modeled with actual concentrations. Moreover, in order to repre-
sent more complex relations and conditions, they use the functional Petri 
net where the calculation of the dynamic biocatalytic processes can be re-
alized by using functions for specifying the arc weight. By using De-
sign/CPN, which is a well known tool based on the high-level Petri net 
technique, modeling and simulating of metabolic pathways can be carried 
out (Genrich et al., 2001, and Heiner et al., 2001). 

A continuous timed Petri net (CTPN) is a Petri net that counts time, and 
where the mark of each place is a nonnegative real number and firing oc-
curs continuously. We again use an example of a CTPN, in Fig. 7.2, for 
explaining some concepts related to it. There are three places, e1, e2, and e3,

which hold 10.0, 10.0, and 0.0 as their initial marks, respectively. Two arcs 
(e1, p1) and (e2, p1) go into transition p1 and arc (p1, e3) goes out from p1.
These arcs, (e1, p1 ), (e2, p1), and (p1, e3) are assigned constant values 0.0, 
1.0, and 1.0, called weights, respectively. They are also assigned other 
constant values, 1.0, 2.0, and 1.0, called speeds, respectively. The weights 
on arcs (e1, p1) and (e2, p1) function as thresholds for the firing condition. 
The weight on arc (p1, e3) means nothing. For transition p1, the speeds of 
arcs (e1, p1), (e2, p1) are called the input speeds of p1 and the speed of arc 
(p1, e3) is called the output speed of p1. Transition p1 fires as long as the 
conditions M (e1, t) ≥ w (e1, p1) and M (e2, t) ≥ w(e2, p1) are satisfied. While 
p1 is firing, M (e3, t) is increased with speed 1.0 and M (e1, t) and M (e2, t)
are decreased with speeds 1.0 and 2.0, respectively. Namely, dM (e1, t) / dt
= −1.0, dM (e2, t) / dt = −2.0, and dM (e3, t) / dt = 1.0. Figure 7.2 shows its 
simulation. In this definition of CTPN, the input speed and output speeds 
can be different for any transition. However, another definition of CTPN 
makes a restriction that the input speed and output speeds must be the 
same for every transition. 

Ordinary differential equations (ODEs) are widely used to express bio-
logical phenomena such as biochemical reactions. CTPN can be used for 
modeling with this feature. If a biological process is modeled and repre-
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sented as a large system of ODEs, it may be difficult to observe the whole 
process intuitively like a picture. On the other hand, the biological process 
modeled with CTPN may provide us an intuitive graphical representation 
that includes the network structure and biological knowledge of the proc-
ess. Thus, it is more understandable. 

Consider the glycolytic pathway and lac operon gene regulatory net-
work (Doi et al., 2004a, 2004b). The lac operon gene regulatory network 
contains a switching mechanism that may be modeled with TPN. The 
mechanism of gene regulation usually consists of activation and repres-
sion. The glycolytic pathway is a cascade of enzyme reactions that may be 
modeled with CTPN. Furthermore, in an enzyme reaction, some quantity 
of the enzyme is required for reaction while the quantity of the enzyme it-
self is not decreased during the reaction, except for its degradation. 

Some favorable features also have been introduced in Petri net theory. 
In addition to normal arc, inhibitory arc and test arc have been defined for 
convenience (Fig. 7.3). An inhibitory arc with weight r enables the transi-
tion to fire only if the value of the place at the source of the arc is less than 
or equal to r. An inhibitory arc can be used to represent the function of 
“repress” in gene regulation. A test arc does not consume any contents of 
the place at the source of the arc by firing. Test arcs can be used to model 
transcription processes and enzyme reactions since nothing is consumed by 
these processes. 

Fig. 7.3. Basic elements of hybrid Petri net 

As explained above, biological processes may involve both discrete and 
continuous features simultaneously. Hybrid Petri net (HPN) can deal with 
these features. Alla and David (1998) defined the concept of HPN by com-
bining TPN and CTPN. In HPN, the speeds and weights assigned to arcs 
are constant. Instead of using a constant for representing the speed of an 
arc, Drath (Drath, 1998, and Hucka et al., 2003) has defined the concept of 
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hybrid dynamic net (HDN) by assigning the speed of firing to a transition 
that depends on the values of places where the transition has arcs. This 
means that the arcs connected to the transition have the same speed, and 
this speed can be controlled as a function of the values of some specific 
places. 

Figure 7.4 shows an HPN model which describes the transcription of 
two genes – gene1 and gene2 – on the same operon to mRNAs – mRNA1 
and mRNA2, and their translations from mRNAs to proteins – protein1 
and protein2. The types of the places and transitions in the model are 
summarized in Tables 7.1 and 7.2. 

Table 7.1. Properties of entities in Fig. 7.4. 

Place place type initial mark 
m1 discrete M(m1,0)
m2 discrete M(m2, 0) 
m3 discrete M(m3, 0) 
m4 continuous M(m4, 0) 
m5 continuous M(m5, 0) 
m6 continuous M(m6, 0) 
m7 continuous M(m7, 0) 

Table 7.2. Properties of transitions in Fig. 7.4. 

Transition transition type weight delay/speed 
t1 discrete w(m4; t1) f(t1)/-
t2 discrete w(m3; t2) f(t2)/-
t3 discrete w(m3; t3) f(t3)/-
t4 continuous - -/f(t4)
t5 continuous - -/f(t5)
t6 continuous - -/f(t6)
t7 continuous - -/f(t7)
t8 continuous - -/f(t8)
t9 continuous - -/f(t9)

The initial mark of place m1 at time 0 (M(m1, 0)) is set to be one (this 
represents the RNA polymerase binding to the promoter of the operon), 
whereas the marks of other places, m2, m3, m4, m5, and m6, are zero. The 
delay f (t1) associated with the discrete transition t1 reflects the time 
needed for the transcription of gene1 by the RNA polymerase. Whenever 
the transcription of gene1 is finished, the mark of the continuous place m4,
which represents the mRNA concentration of gene1, is increased by w(m4,
t1). The degradation rate for mRNA of gene1 is given by f (t6). 
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Fig. 7.4. An example of HPN. Discrete place and discrete transition are repre-
sented by symbols “single circle” and “filled rectangle”, respectively. Continuous 
place and continuous transition are represented by symbols “double circle” and 
“unfilled rectangle”, respectively. This example models biological transitions, 
transcriptions and translations of two genes, gene1 and gene2 

The speed f (t4) of the continuous transition t4 reflects the translation 
speed of gene1. The place m4 is simultaneously an input and an output of 
the transition t1 because it is required for translation but should not be 
consumed. For this modeling, we can also use a test arc. The increasing 
rate of gene1 protein (the mark of the place m2) is given by f (t4). The 
degradation rate of gene2 protein is given by f (t7). The delay f (t2) of the 
transition t2 represents the time needed for the RNA polymerase to move 
from the end of gene1 to the beginning of gene2. When the mark of m3 be-
comes greater than w(m3, t2) = 0, RNA polymerase begins the gene2 tran-
scription. Further comments on gene2 are omitted, since they are similar to 
the ones for gene1 described above. 
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7.3 Hybrid Functional Petri Net 

We define the notion of hybrid functional Petri net (HFPN, Matsuno et al., 
2003c) by allowing any functions for the speed, weight, and delay in HPN. 
HDN allows dynamic firing speed, favorable for modeling biological 
processes. However, it is unfavorable that the arc(s) connected to the tran-
sition must have the same speed. Consider a continuous process for de-
composing a trimer to three monomers. This can be modeled with HDN, as 
in Fig. 7.5, by using two transitions, p1 and p2, and a test arc. On the 
other hand, it can be modeled with HPN, as in Fig. 7.5. This is the reason 
why we assign speed to each arc. 

Fig. 7.5. A biological process of decomposing trimers to monomers is modeled 
with HDN and HPN 

In addition to this feature, the dynamic feature is also necessary for 
modeling biological processes. Consider a chemical reaction 2CO2 + H2 S
+ 2H2O → 2CH2O + H2SO4 that has stoichiometries, two for the com-
pounds CO2, H2O, and CH2O, and one for the compounds H2S and CH2O.
In such a chemical reaction, the reaction rate depends on the masses of the 
stoichiometries. When modeling with HFPN, the input or output speed of 
an arc is proportional to the stoichiometry of a compound that represents 
the value of the place, e.g., the consumption speeds of CO2 and H2O are 
two times faster than that of H2S, and the production speed of CH2O is two 
times faster than that of H2SO4. Moreover, there are many ODE-based 
chemical kinetics, e.g., the Michaelis-Menten reactions, Hill kinetics, and 
Ping-Pong kinetics (Voet and Voet 1995). 

One of the issues of our objective is to create a suitable architecture that 
can represent biological processes as easily as possible. Thus, this extesion 
of HPN/HDN is necessary for modeling these biological processes. 
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7.4 Hybrid Functional Petri Net with Extension 

7.4.1 Definitions 

For modeling more complex biological processes intuitively, we are re-
quired to deal with various kinds of biological information, e.g., the den-
sity of molecules, the number of molecules, sequences, molecular modifi-
cations, binding location, localization of molecules, etc. The purpose of 
this section is to formally define an extension of HFPN with which we can 
cope with this feature in biological system modeling. 

First, we introduce types for biological entities and processes. The set T
of types is defined by the following abstract syntax: 

〈type〉 ::= boolean || integer || integer+ || real
|| real+ || string || pair (〈type〉,〈type〉)
|| list 〈type〉 || vector 〈type〉 || object 
(〈type〉,···, 〈type〉)

Then, for θ ∈ T, we define the domain D(θ) of θ as follows: 

1.D(boolean) = {true, false}, D(integer) = Z (the 
set of integers), D(integer+) = N (the set of 
nonnegative integers), D(real) = R (the set of 
real numbers), D(real+) = R≥0 (the set of non-
negative real numbers), D(string) = S (the set 
of strings over some alphabet). 

2.D(pair(θ1, θ2)) = D(θ1) × D(θ2). 
3.D(listθ) =UK≥0 D(θ)K.
4.D(object(θ1, · · ·, θn)) = D(θ1) × · · · × D(θn). 

For convenience, we denote D* = Uθ�T D(θ). 
Let E be a finite set. A type function for E is a mapping τ : E→ T . For e

∈ E, τ (e) is called the type of e. A marking of E is a mapping M : E→ D*
satisfying M(e) � D(τ (e)) for e � E. For e ∈ E, M (e) called the mark of  
e. We denote by M the set of all markings of E. We can regard M as the set 
∏e�E D(τ (e)). Consider a function f : M → R. For a subset F ⊆ E and an 
element v ��∏e∈F D(τ (e)), let f [F = v] : ∏e∈E-F D(τ (e)) → R be the 
function obtained from f  by restricting the value for F to v, i.e. f [F = v]
(z) = f (z, v) for z � ∏e∈E-F D(τ (e)). Let F be a subset of E such that e �
F satisfies D(τ (e)) = R or R>=0. We say that the function f is continuous for
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F if f [E - F = v] : ∏e∈F D(τ (e)) → R is continuous on ∏e∈F D(τ (e)) for 
any v � ∏e∈E-F D(τ (e)). 

Based on the above terminology, we define the concept of hybrid func 
tional Petri net with extension (HFPNe). The basic idea of HFPNe is two-
fold: to introduce types, with which we can deal with various data types to 
employ functions of marking f (M) to determine weight, delay, speed, etc., 
that control the system behavior. In the following definition, we use differ-
ent terms for place, transition, arc, etc., which are conventionally used in 
Petri net theory, since biological system modeling requires more intuitive 
terms for representing biological entities and processes. 

Definition 1 We define a hybrid functional Petri net with extension 
(HFPNe) H = (E, P, h, τ, C, d, α) as follows: 
1. E = {e1, · · ·, en } is a non-empty finite set of entities and P = {p1, · · ·, 

pm} is a non-empty finite set of processes, where we assume E ∩ P = 
02.

2. h : E � P → {discrete, continuous, generic} is a mapping called 
the hybrid function, A process p � P with h(p) = discrete (or con-
tinuous or generic) is called a discrete process (or continuous process 
or generic process). An entity e � E with h(e) = discrete (or con-
tinuous or generic) is called a discrete entity (or continuous entity or, 
generic entity). 

3. τ : E → T is a type function for E such that τ (e)) = integer+ if e is a 
discrete entity, and τ (e) = real+ if e is a continuous entity. 

4. C = (EP, PE, a, w, u) consists of subsets EP � E × P and PE � P × 
E. An element in EP � PE is called a connector3. Each connector has a 
connector type, which is given by a mapping a : EP � PE → {proc-
ess, associate, inhibitor} called the connector type function that 
satisfies the conditions: (i) a(c) = process for c � PE. (ii) All connec-
tors c = (e, p) � EP satisfy the conditions in Table 7.3 (a) and all con-
nectors c = (p, e) � PE satisfy the conditions in Table 7.3 (b). A con-
nector c = (e, p) � EP is called a process connector (or an associate 
connector or an inhibitory connector) if a(c) = process (or associate 
or inhibitor)4. For a connector c = (p, e) � PE, a(c) = process by 
definition, and we also call it a process connector. We say that a con-

2 Terms “entity” and “process” correspond to place and transition, respectively.
3 “Connector” corresponds to arc.
4 “Process connector”, “associate connector”, and “inhibitory connector” corre-

spond to arc with weight, test arc and inhibitory arc, respectively.
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nector c = (e, p) � EP is discrete (or continuous or generic) if p is a 
discrete process (or a continuous process or a generic process). In the 
same way, we also say that c = (p, e) � PE is discrete (or continuous 
or generic) if p is a discrete process (or a continuous process or a ge-
neric process). Let M be the set of all markings of E and let F be the set 
of continuous entities in E. We define Ddiscrete = { f | f  : M →

N}, Dcontinuous = { f  | f  : M→ R≥0 is continuous for F}, Dgeneric = 

{ f |  f : M → D*}, and Dboolean  = { f  | f  : M → {true, false}. 
Then, w and u are given as follows: 

(a) w : EP→ Ddiscrete � Dcontinuous � Dboolean is a function 
called the activity function such that for a connector c � EP (i) 
w(c) � Ddiscrete if c is discrete, (ii) w(c) � Dcontinuous if c
is continuous, (iii) w(c) � Dboolean  if c is generic. For a con-
nector (e, p), w(e, p) is used as a function giving the threshold in 
discrete and giving continuous cases and the condition in the ge-
neric case required for enabling the process p.

(b) u : EP � PE → Ddiscrete � Dcontinuous � Dgeneric is a 
function called the update function that satisfies the following 
conditions: for a connector c � EP � PE, let c = (e, p) � EP
or c = (p, e) � PE. (i) u(c) � Ddiscrete  if c is discrete. (ii) 
u(c) � Dcontinuous  if c is continuous. (iii) If c is generic, then 
u(c) is a function in Dgeneric such that u(c)(M) is in D(τ(e)) for 

any marking M � M. For a connector c = (e, p) or c = (p, e), 
u(c) is used as a function which will update the mark of e.

5. d : Pdiscrete → Dcontinuous is a mapping called the delay, where 
Pdiscrete is the set of discrete processes in P. For a discrete process p,

d(p) : M→ R≥0 is called the delay function of p.
6. α > 0 is a real number called the generic time. The generic time is used 

as the clock for generic processes. 

For graphical representation, HFPNe inherits the tradition of other Petri 
nets as in Fig. 7.6. 

We introduce a parameter t ��R≥0, called the time to a hybrid func-
tional Petri net with extension H = (E, P, h, τ, C, d, α). Given a marking I
called the initial marking, we define a marking M(t) called the marking at 
time t and a marking Mr(t) called the reserved marking at time t for t ≥ 0 in 
the following way. By convention, we denote M (e, t) = M (t)(e) and Mr(e,
t) = Mr(t)(e) for e � E. We define ˜M (t) by ˜M (e, t) = M (e, t) − Mr(e, t)
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for discrete and continuous entities and ˜M (e, t) = M (e, t) for generic enti-
ties e.

Table 7.3. (a) For a connector c = (e, p) � EP, the entity type h(e), the process 
type h(p), and the connector type a(c) must satisfy the given conditions, where √
means that the connection is allowed and − means that the connection is not al-
lowed. (b) For a connector c = (p, e) � PE, the connector type a(c) is a process 
by definition. The entity type h(e) and the process type h(p) must satisfy the given 
conditions, where √ means that the connection is allowed and − means that the 
connection is not allowed. 

connect type process connector 
process type discrete continuous generic 

discrete 
continuous 

entity 
type 

generic 

connect type associate or 
inhibitory connector 

process type discrete continuous generic 
discrete 
continuous 

entity 
type 

generic 
(a) 

connect type process connector 
process type discrete continuous generic 

discrete 
continuous 

entity 
type 

generic 
(b) 

First, we define M (0) = I, and Mr(e, 0) = 0 for all discrete and continu-
ous entities e. For all generic entities e, Mr(e, t) = null (the empty list) for 
any t ≥ 0. For t > 0, we define M (t) and Mr(t) as follows. For a process p
� P at time t, if the following conditions are satisfied, then the process p
is said to be enabled at time t. Otherwise the process is said to be une-
nabled at time t.

1. If p is a discrete process, then for all connectors c = (e, p) � EP the 
following conditions hold: 
(a) ˜M (e, t) ≥ w(e, p)(M (t)) if a(c) ≠ inhibitor.
(b) ˜M (e, t) < w(e, p)(M (t)) if a(c) = inhibitor.
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2. If p is a continuous process, then for all connectors c = (e, p) � EP the 
following conditions hold: 
(a) ˜M (e, t) ≥ w(e, p)(M (t)) if a(c) ≠ inhibitor.
(b) ˜M (e, t) ≤ w(e, p)(M (t)) if a(c) = inhibitor.

3. If p is a generic process, then for all connectors c = (e, p) � EP the fol-
lowing conditions hold: 
(a) w(e, p)( ˜M (t)) = true if a(c) = inhibitor.
(b) w(e, p)( ˜M (t)) = false if a(c) = inhibitor.

If an unenabled process turns out to be enabled at time t, the process is said 
to be triggered at time t. If an enabled process turns to be unenabled or an 
unenabled process turns to be enabled at time t, the process is said to be 
switched at time t. If a discrete process p is triggered at time t, we say that 
the discrete process can be fired at time t + d(p)(M(t)). If a generic process 
p is triggered at time t, we say that the generic process can be fired at time 
t + α.

For an entity e � E and time t, let Sd(t) be the set of discrete processes 
that can be fired at time t, and let Ud(t) be the set of discrete processes 
which are triggered at time t. For a discrete process p that can be fired at 
time t, we denote by q(p, t) the time when p is triggered. Let Sc(t) be the set 
of continuous processes that are enabled at time t. Let Sg(t) be the set of 
generic processes that can be fired at time t.

Note that we can choose a sufficiently small 0>tε  such that in the in-

terval ),[ tt tε− , neither a discrete nor a generic process is triggered or 

can be fired, and no continuous process is switched. 
Also, note the following facts: 

1. Sc )( tt ε− = Sc(t′) for any t′ �� ),[ tt tε−  since no continuous process 

is switched in the interval ),[ tt tε−
2. ˜M (t′) is constant on E − Econtinuous in the interval [t − εt, t) since nei-

ther a discrete nor a generic process is triggered or can be fired in the in-
terval ),[ tt tε− where Econtinuous = {e � E | e is continuous}. 

3. For any continuous connector c, u(c)(˜M (t′)) is continuous on 
),[ tt tε−  since by definition u(c) is continuous for Econtinuous and ˜M 

(t′) is constant on E − Econtinuous in the interval ),[ tt tε− .

Then, M (t) is defined by the following procedure: 
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1. Tmp ←M )( tt ε− , Tmpr ←Mr )( tt ε−
2. if t = αk for some integer k ≥ 1 then 

for each generic process p � Sg(t)
Tmp′← Tmp 
for each (e, p) � EP with a(e, p) = process 

   Tmp′(e)← u(e, p)(Tmp)
for each (p, e) � PE 

   Tmp′(e)← u(p, e)(Tmp)
Tmp ← Tmp′

3. for each continuous process p � Sc )( tt ε−
Tmp′← Tmp
for each (e, p) �EP with a(e, p) = process 

Tmp′(e)← Tmp′(e) – ∫ −

�

�� �

u(e, p)(˜M(x))dx

for each (p,e) �����

Tmp′(e)← Tmp′ (e) + ∫ −

�

�� �

u(p, e)(˜M(x))dx

Tmp ← Tmp′
4. for each discrete process p� Sd(t)

Tmp′← Tmp
for each (e, p) �EP with a(e, p) = process 

Tmp′(e)← Tmp′(e) – u(e, p)(˜M(q(p, t)))
for each ( p, e) �PE

Tmp′(e)← Tmp′(e) – u(p, e)(˜M(q(p, t)))
Tmp ← Tmp′

5. M (t)← Tmp

Then Mr (t) is defined as follows: 

6. for each entity e with h(e) = discrete or continuous 
Tmpr(e)← Tmp r(e) – ∑u(e, p)(˜M(q(p, t))) + ∑u(e, p)(˜M )( tt ε− )

7. Mr(t) ←Tmpr.

We call M(t)(t ≥ 0) the behavior of H starting at the initial marking M
(0) = I.
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Fig. 7.6. Graphical notations of HFPNe components 

7.4.2 Relationships with Other Petri Nets 

HFPN H = (E, P, h, τ, C, d) is defined from HFPNe by deleting all matters 
with “generic” and by adding the restriction that u(c) = w(c) for any dis-
crete connector c = (e, p) � EP. This condition means that the weight 
w(c) of the connector is the same as the number of tokens u(c) removed 
from the entity e by firing. This convention is traditionally employed in 
Petri net, as a weight. In our definition of HFPNe, however, we have sepa-
rated these two notions. HPN H = (E, P, h, τ, C = (EP, PE, a, w, u), d)
(Alla and David, 1998) is defined by adding the following restriction (i) to 
HFPN: w(c), u(c), and d(p) are constants for any connector c � EP �
PE and any process p � P. HDN H = (E, P, h, τ, C = (EP, PE, a, w, u), d)
[19, 20] is also defined by adding the following restriction (ii) to HFPN: 
For any continuous process p, it is assumed that w(e, p) = u(p, e′) for any 
process connectors (e, p) � EP and (p, e′) � PE.

If we delete all matters with “discrete” from HPN, we have the defini-
tion of CTPN. If we delete all matters with “continuous” from HPN, we 
have the definition of TPN. Furthermore, if we delete the matters with “de-
lay” from TPN, we have the definition of the original Petri net. Thus, 
HFPNe is a highly abstract extension of the Petri net for biological process 
modeling that can involve PN, TPN, CTPN, HPN, and HFPN as special 
cases. 
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7.4.3 Implementation of HFPNe in Genomic Object Net 

In Genomic Object Net, we have implemented a simulator of HFPNe by 
approximating the time t by t = 0, δ, · · ·, kδ, · · · for integers k by using an 
appropriately small real number δ > 0. Furthermore, the generic time α is 
set to be δ for simplicity. 

Another issue in implementation is the problem of conflict resolution. In 
the above procedure, Step 2 for generic processes and Step 4 for discrete 
processes may have conflicts for execution. Let pi1, . . ., pit be processes 
which can be fired in Step 2 or Step 4. In our implementation, we arrange 
these processes in a random order and execute the processes according to 
this order. During this execution, we will skip the processes that cannot be 
fired any more due to the changes of marks of entities. 

Needless to say, hierarchization is a key concept for representing com-
plex network structures in an intuitive way (Matsuno et al., 2000). The hi-
erarchical representation has been introduced in the HDN model by em-
ploying the object-oriented approach, and this model is called the hybrid 
object net (HON) (Drath, 1998, 1999). In Genomic Object Net, we have 
inherited this hierarchical representation schema for the HFPNe. More-
over, for describing HFPNe, we have developed an XML format called 
GONML, which will be discussed in Subsection 7.7.3. 

7.5 Modeling of Biological Processes with HFPNe 

In this section, we demonstrate that more biological processes can be eas-
ily modeled with HFPNe than HFPN. For this purpose, we select for mod-
eling four biological processes that extensively use the HFPNe features. 
These biological processes are important activities in living cells and 
should be handled with application tools that aim to model and simulate 
biological systems. Our aim is not only to theoretically describe how to 
model biological processes, but also to provide a useful application tool to 
users in biology and medicine. In the following sections, we exemplify that 
complex biological processes can be modeled with GON, while illustrating 
snapshots of HFPNe models, as in Fig. 7.7(b), Fig. 7.8(a), Fig. 7.9, and 
Fig. 7.10. Other biological processes, e.g., complex carbohydrate synthesis 
and Xenopus cell cycle pathway including cell division processes, have 
been described (Matsui et al., 2004; Nagasaki, 2004; Nagasaki et al., 
2004a). 
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(a) 

(b) 

Fig. 7.7. (a) An alternative RNA splicing model of the Calcitonin/CGRP gene in 
Fig. 7.7(b). (b) An alternative RNA splicing model of the Calcitonin/CGRP gene 
with HFPNe 

7.5.1 From DNA to mRNA in Eucaryotes – Alternative Splicing 

The mechanism from DNA to mRNA in eucaryote is more complicated 
than that in bacteria. The major difference derives from eucaryotic genes 
that consist of two regions, i.e., exons and introns. As in Fig. 7.7(a), the 
mechanism consists mainly of four steps: step 1: transcription; step 2: 5 
capping; step 3: RNA splicing; and step 4: 3 polyadenylation. In step 1, 
DNA is transcribed into precursor-mRNA (especially named to distinguish 
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it from mRNA, or mature-mRNA, after step 4). In step 2, 5 end of the pre-
cursor- mRNA is modified. In step 3, each splicing event removes one in-
tron, and accordingly all introns of the precursor-mRNA are removed. Fi-
nally, in step 4, 3 end of precursor-mRNA is modified to produce mature-
mRNA in order to allow the cell to assess whether both ends of the mRNA 
are present before it exports the RNA sequence from the nucleus for trans-
lation into proteins. 

Table 7.4. Update functions of connectors for the Calcitonin/CGRP transcription 
model in Fig. 7.7(b). External Java classes Transcription, Splicing, and Splicing 
CalcitoninCGRP are available at our Web site (http://genomicobject.net/public/ 
BiotechBook 2004/code/). 

conn- 
ector 

connector 
type 

update function 

a01 process import("gon.Transcription"); 
totalnum = m08.length(); num = m01.length(); 
if(totalnum > num){ 
nextcode = m08.substring(totalnum-num-1,totalnum-nu); 
newsequence = m01 + Transcription::Trans(nextcode);} 
else{new_sequence = "";} return newsequence; 

a02 process import("gon.Transcription"); 
if(Transcription::Finish(m01,m08)){return m01;} 
else{return "";} 

a03 process return m02; 
a04 process import("gon.Transcription"); 

if(!m02.equals("")){return Transcrip-
tion::Capping(m02);}
else{return "";} 

a05 process return ""; 
a06 process import("gon.Splicing_CalcitoninCGRP"); 

if(m03.equals("")){return m03;} else{return 
Splicing_CalcitoninCGRP::AlternativeSplicing(m03);}

a08 process return ""; 
a10 process return m10; 
a11 process num = 0; for(i=0;i<m05.length;++i){ 

if(m05[i].equals(m09)){num++;}} return num; 
a12 process return m05; 
a13 process num = 0; for(i=0;i<m05.length;++i){ 

if(m05[i].equals(m10)){num++;}} return num; 
a14 process return m05; 
a15 process import("gon.Transcription"); 

if(m04.equals("")){return m05;} 
else{return
m05+[Transcription::Polyadenylation(m04)];}

In step 3, there is a eukaryote-specific splicing process named alterna-
tive RNA splicing. The alternative RNA splicing is to produce different 
mRNA from the same precursor-mRNA by splicing it in different ways. 
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The DNA to mRNA transcription with alternative RNA splicing was found 
in 1982 for Calcitonin/CGRP gene expression (Amara et al., 1982). We 
draw focus to modeling Calcitonin/CGRP gene expression while combin-
ing other recent biological knowledge (Coleman et al., 2003, Tran et al., 
2003). 

As in Fig. 7.7(a), the Calcitonin gene expression consists of four introns 
and five exons, and the transcription process progresses with step 1, step 2, 
step 3 and step 4. In step 3, by alternative splicing events, one of 
exon1/exon2/exon3/exon4 (say set1) or exon2/exon3/exon5/exon6 (say 
set2) is selected. If set1 (set2) is selected, the mature-mRNA is translated 
into Calcitonin (CGRP). The HFPNe model can faithfully realize these 
steps as generic processes and realize precursor-mRNA and mature-
mRNA states as generic entities with the type string (see Fig. 7.7.(b)). In 
the model, the mature-RNAs, Calcitonin mRNA and CGRP mRNA, are 
represented by the generic entity m09 with the type list string. The 
generic entities m12, m13, m14, and m15 are used to inform which se-
quence should be spliced in the generic processes t03, t04, t05, and t06,
respectively. These generic notions are necessary for modeling the four 
steps from DNA to mRNA. It is hard to model with HFPN [18] and other 
simulation tools [50, 77]. The detailed parameters and functions are de-
scribed in Tables 7.4 and 7.5. 

Table 7.5. Properties of entities for the Calcitonin/CGRP transcription model in 
Fig. 7.7(b). 

entity entity type type initial mark 
m01/m02/m03/m04 generic string “”
m05 generic list 

string
( ) 

m06/m07 discrete integer+ 0
m08/m09/m10 generic string see [27] 

In another example of alternative splicing, the DSCAM gene in Droso-
phila, four exons (A, B, C, and D) are selected and combined. Each pre-
cursor-mRNA contains 12 alternatives for exon A, 48 alternatives for exon 
B, 33 alternatives for exon C, and two alternatives for exon D (Webster et 
al., 2000). Thus, there are 38,016 possible mature mRNAs for the DSCAM 
gene. If the model is created with HFPN, we have to deal with 38,016 enti-
ties for the DSCAM transcription process. If the model is created with 
HFPN, 38,016 entities are necessary for the simple DSCAM transcription 
model. 
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 (a) (b) 
connector update function 
a3 m4 = 0;for(i=0;i<m3.length;++i){ 

if(m3[i].equals(m6)){m4++;}} return m4; 
a4 m5 = 0;for(i=0;i<m3.length;++i){ 

if(m3[i].equals(m7)){m5++;}} return m5; 
a5 import("gon.Translation"); 

num=m2[1].length(); 
n=m1.substring(numx3+m2[0],(num+1)x3+m2[0]); 
if(Translation::EndCode(n)){ m3 += [m2[1]]; } 
return m3; 

a7 import("gon.Translation"); 
num=m2[1].length(); 
n=m1.substring(numx3+m2[0],(num+1)x3+m2[0]); 
if(!Translation::EndCode(n)){ 
    m2[1] += Translation::Trans(n); 
    if(num==2 && Math::random()<=0.1){ 
        m2[0]=-1;}} 
else{m2[0] = 0;m2[1] = "";}return m2; 

(c) 
entity entity type type initial mark 
m1/m6/m7 generic string see [27]
m2 generic pair(integer, string) (0, “”) 
m3 generic  list string ()
m4/m5 discrete integer+ 0

(d)

Fig. 7.8. (a) Ribosomal frameshifting in HIV-1 gag-pol. (b) Ribosomal frameshift-
ing in HIV-1 gag-pol expressed with HFPNe. The characterization of ribosomal 
frameshifting was first described by Tyler (Jacks et al., 1988). (c) Update func-
tions in (b). (d) Properties of entities in (b) 
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7.5.2 Translation of mRNA – Frameshift 

Frameshift is also an important biological process that occurs during RNA 
translations. The frameshift is to skip or re-read some ribonucleotides 
when translating RNAs, and it is commonly used by many RNA viruses as 
programmed ribosomal frameshifting (Jacks et al., 1988). 

For example, a model of ribosomal frameshifting in the human immu-
nodeficiency virus (HIV-1) (gag-pol expression in Fig. 7.8(b)) can be 
modeled with HFPNe as in Fig. 7.8(a). As in Fig. 7.8(b), two proteins, gag 
and pol, are produced from one RNA sequence with the frameshift by re-
reading a ribonucleotide, adenine (A), twice. In HFPNe, the generic entity 
e3 has the type pair(integer (i1), string (s1)) in order to express 
frameshifting states; i1 denotes how many ribonucleotides are skipped (+1) 
or re-read (-1) and s1 denotes the length of the current translated amino-
acid sequence. The frameshifting occurs at a specific point. In addition, the 
probability of a re-read at the point is 0.1 in wild type (Jacks et al., 1988). 
Thus, in the model we assign an mRNA translation skip function with sto-
chastic behavior to this specific point. The stochastic feature is already re-
alized in HFPN, and HFPNe also inherits this feature. The detailed update 
functions are summarized in Fig. 7.8(c) and the initial marks and types of 
entities are summarized in Fig. 7.8(d). It is also not straightforward to rep-
resent the ribosomal frameshifting with HFPN. 

7.5.3 Huntington’s Disease 

As an advanced pathway model with HFPNe, we selected a genetic disease 
called Huntington’s disease. Disease pathway modeling and simulation are 
becoming the most important topics for treating the disease from the path-
way level in biology and medicine. Huntington’s disease is an autosomal 
dominant progressive neurodegenerative disorder that is characterized by 
chorea, psychiatric disturbances, and dementia (Martin and Gusella, 1986). 
The disease, in short, is the generic defects of Huntingtin. Huntingtin is a 
multi-domain protein with a polymorphic glutamine/proline (G/P)-rich 
domain at the N terminus (Huntington 1993). Polyglutamine (polyQ) se-
quences in unaffected individuals range from 11 to 34 glutamine residues, 
whereas those of Huntingtin disease patients contain 37 or more glutamine 
residues (more than 90) (Bates et al., 2002). The disease appears when a 
specific polyQ length is exceeded. 

Based on the disease model proposed by Wellington et al. (Hickey and 
Chesselet, 2003), we created an HFPNe model for this disease, as shown in 



204 Masao Nagasaki et al. 

Fig. 7.9. Our model uses the following known experimental facts found in 
the literature. 

Fig. 7.9. Huntington’s disease model with HFPNe. HFPNe components in this 
figure are replaced with suitable images that represent biological information 

fact 1 Huntingtin can be cleaved by caspase-3 and yields two fragments, 
N terminal region (NT) that contains polyQ repeats in Huntingtin 
and C terminal region (CT) (Hickey and Chesselet, 2003). 

fact 2 Both disease Huntingtin and normal Huntingtin can cleave, and the 
rates of fragmentation are the same (Wellington et al., 2002). 

fact 3 Procaspase-3 has low-level catalytic activity for disease Huntingtin
and is capable of cleaving the same substrates, i.e., NT and CT, as 
activated caspase-3 [71]. 

fact 4 When cleaved by caspase-3, NT has responsibility for cytotoxicity 
[36, 84]. 

fact 5 NT has the ability to form protein aggregates and can be found in 
the nucleus and in the cytoplasm (Roizin et al., 1979). 

fact 6 The aggregate number of NT increases in proportion to the length 
of polyQ [74]. 

fact 7 NT fragments of mutant Huntingtin have the ability to induce cas-
pase-3 [11]. 
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fact 8 Both disease and normal NTs can cross the nuclear membrane. The 
smaller the cleavage product, the greater the tendency of Hunting-
tin to cross [25, 85]. 

Table 7.6. Properties of connectors for Huntington’s disease model in Fig. 7.9. 
The other property of process connectors, i.e., update function, is summzrized in 
Table 7.7. 

connector connector 
type 

activity function 

a02/a09/a19/a20 process 0.0 
a04/a05/a06/a11 process return true; 
a12 process return{(m4[1]>20.0)?true:false;} 
a14 associate return{(m4[0]>37&&m6>0.0)?true:false;} 
a15 associate return{(m4[0]>37&&m1>0.0)?true:false;} 
a17 process 20.0 
a21 associate return{(m5[1]>0.0)?true:false;} 
a23/a26/a29 process return true; 
a25/a28 process 1.0 
a31 process return{(m2[1]>10.0)?true:false;} 

Huntingtin and NT change their function depending on their polyQ 
length (fact 3, fact 6, fact 7). Thus, in our model, these proteins are repre-
sented with generic entities with the type pair(integer+, real+). The 
first attribute integer+, corresponds to the length of polyQ, and the sec-
ond attribute, real+, corresponds to the quantity of the protein, i.e., NT or 
Huntingtin. In our model, NT and Huntingtin are represented with m1 and 
m4, respectively. The properties of connectors in the model are summa-
rized in Tables 7.6 and 7.7. The properties of processes and entities are 
summarized in Tables 7.8 and 7.9. Huntingtin m4 is translated by the ge-
neric process t09 while procaspase-3 m6 is translated by the continuous 
process t10. The procaspase-3 m6 can cleave t12 disease Huntingtin
(fact 3). Thus, the weight function of associate connector a14 has a func-
tion that depends on the length of Huntingtin m4 and the cleavage process 
t12 is not enabled for normal Huntingtin. The activity functions and types 
of connectors are summarized in Table 7.6. On the other hand, the cas-
pase-3 m5 can cleave normal Huntingtin and disease Huntingtin modeled 
with process t11 (fact 2). Thus, the weight of associate connector a21 has 
a function that does not depend on the length of Huntingtin m4. Huntingtin
m4 is cleaved and separated into CT m3 and NT m1 (fact 1). CT does not 
contain the polyQ region and is represented by continuous entity m3 (fact 
1). 
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Table 7.7. Update functions of connectors for the Huntington’s disease model in 
Fig. 7.9. Update function must be defined for all process connectors that are con-
nected with at least one generic process. 

connec-
tor 

connector 
type 

update function 

a01/a02 process 1.0 
a03 process m4[1] = m4[1]+1.0xdt; return m4; 
a04 process m4[1] = m4[1] - (m4[1]xdt)/200; return 

m4; 
a05 process m4[1] = m4[1]-0.0001xm4[1]xm6xdt; return 

m4; 
a06 process m4[1] = m4[1]-0.001xm4[1]xm5xdt; return 

m4; 
a07 process m3 = m3+0.0001xm4[1]xm6xdt; return m3; 
a08 process m3 = m3+0.001xm4[1]xm5xdt; return m3; 
a09 process m3/50 
a10 process m1[1] = m1[1]+0.001xm4[1]xm5xdt; return 

m1; 
a11 process m1[1] = m1[1]-(m1[1]/100)xdt; return m1; 
a12 process m1[1] = m1[1]-0.001xm1[1]xdt; return m1; 
a13 process m2[1] = m2[1]+0.001xm1[1]xdt; return m2; 
a16 process 1.0 
a17 process m6 = m6 - 0.001xm1xm6xdt; return m6; 
a18 process m5 = m5 + 0.001xm1xm6xdt; return m5; 
a19 process m6/100 
a20 process m5/100 
a22 process m1[1]=m1[1]+0.0001xm4[1]xm6xdt;return 

m1; 
a23 process m1[1]=m1[1]-

(m1[1]x(m1[0]/1000))xdt;return m1; 
a24 process m7=m7+(m1[1]x(m1[0]/1000))xdt;return m7; 
a25 process m7/100 
a26 process m2[1]=m2[1]-

(m2[1]x(m2[0]/1000))xdt;return m2; 
a27 process m8=m8+(m2[1]x(m2[0]/1000))xdt;return m8; 
a28 process m8/100 
a29 process m2[1]=m2[1]-(m2[1]/100)xdt;return m1; 
a30 process m9+=0.001xm2[1];return m9; 

NT inherits the polyQ region. The length of NT relates to the activity of 
the process t13 that changes procaspase-3 m6 into caspase-3 m5 (fact7). 
To model it, the weight function of the associate connector a15 depends 
on the length of NT m1 and process t13 cannot be activated by normal 
Huntingtin. 
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NT in cytoplasm migrates to the nucleus (fact 8), and NT in nucleus m2
causes cell death t19 with cytotoxicity (fact 4). From fact 5, cell death 
can be prevented by the aggregation of NT. Moreover, the aggregation rate 
depends on the length of polyQ (fact 6). NT in nucleus m02 should there-
fore be denoted by generic entities, such as Huntingtin m04 and NT m01, in
the cytoplasm. NT in the cytoplasm m01 and NT in the nucleus m02 con-
nect to the aggregation process t15 and t16, respectively. The update 
functions of process connectors a23 and a26 represent aggregate speeds 
and depend on the length of polyQ in NT in nucleus m2 (fact 6). The up-
date functions of connectors are summarized in Table 7.7. 

With the model, we can simulate the n polyQ length huntingtin (0 ≤ n ≤
100 (Bates et al., 2002)) by changing only the initial marks of m1, m2, and 
m4, as in Table 7.9. If the same disease model is created with HFPN, (i) at 
least one extra entity and (ii) many connectors, are necessary; this means 
(i) an entity (say e1) that denotes the length of Huntingtin, and (ii) associ-
ate connectors that point from e1 to every process that has more than one 
connector whose weight function or speed function depends on the value 
of e1. Thus, the HFPNe Huntingtin disease model is simpler than the 
HFPN model. 

Table 7.8. Properties of processes for Huntington’s disease model in Fig. 7.9. 

Process process type 
t01/t02/t04/t06/t07/t08/t10/t17/t18 continuous 
t03/t05/t09/t11/t12/t13/t14/t15/t16/t19 generic 

Table 7.9. Properties of entities for the Huntingtin disease model in Fig. 7.9. The 
initial value n in m1, m2, and m4 denotes the length of Q repeats in the huntingtin 
protein and must be assigned an integer value when simulating the model. 

entity entity type type initial mark 
dt continuous real+ 0.0 

m1/m2/m4 generic pair(integer+,real+) (n,0.0) 
m3/m5/m6/m7/m8/m9 continuous real+ 0.0 

7.5.4 Protein Modification – p53 

The previous HFPNe models extensively use generic entities and generic 
processes. However, their types of generic entities are only simple ones, 
e.g. string, list real, list string, pair(integer, string). A ge-
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neric entity can take more the advanced type object as its type. Under 
GON, an object corresponds to a Java class, and a method of an object is a 
specific function assigned to the object. If a generic entity has the type ob-
ject, the entity can be initialized with an object with methods and vari-
ables, and these methods can be applied to update functions of connectors 
that join the generic entity and generic processes and to change the mark 
by updating variables of the entity. 

Fig. 7.10. A protein modification model of the p53 protein with HFPNe. The ge-
neric entity in the center m01 is the modification target p53, and other generic enti-
ties m02, · · ·, m11 are enzymes that modify the p53 entity. Generic proc-
esses t01, · · ·, t10 have connectors a01, · · ·, a10, and the modified 
state of p53 in m01 is updated by their update functions 

To show the effectiveness of generic entities with the type object, we 
deal with protein modification in biological processes with enzymes, e.g., 
phosphorylation, acetylation, and methylation. Specifically, the protein 
p53 that can be modified by enzymes CK1, ATM, DNAPK, TFIIH, MAPK,
PCAF, PKC, p300, CK2, and JNK is modeled (Table 7.10) [37]. By these 
enzymes, 18 positions of p53 are modified. There are 218 patterns. Thus, it 
is again hard to create a model with HFPN because 218 entities are neces-
sary for the model with HFPN. 

To model with HFPNe while using the type object for generic entities, 
Protein and Enzyme classes are created, and these classes are inherited 
in order to realize specific Protein class, e.g., p53, and specific Enzyme 
classes, e.g., CK1, ATM, DNAPK, TFIIH, MAPK, PCAF, PKC, p300, CK2, and 
JNK. As in Table 7.11, (i) the generic entity m01 takes a specific object 
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ProteinSet that is initialized with the p53 object that corresponds to the 
p53 class and inherits the Protein class, (ii) the generic entities m02,
m03, m04, m05, m06, m07, m08, m09, m10, and m11 take specific objects 
whose classes inherit Enzyme classes CK1, ATM, DNAPK, TFIIH, MAPK,
PCAF, PKC, p300, CK2, and JNK, respectively (a class name corresponds to 
an enzyme name). These objects are implemented with Java classes on 
GON. Code for these classes is available from http://genomicobject.net/-
public/BiotechBook 2004/code/. 

Table 7.10. The protein modification positions and type of p53 enzymes [37]. 

enzyme modification type modification 
positions 

CK1 Phosphorylation S4,S6,S9,S18 
ATM Phosphorylation S15 
DNAPK Phosphorylation S15,S37 
TFIIH Phosphorylation S33,S315 

S378,S392 
MAPK Phosphorylation T73,T83 
PCAF Acetylation K320 
PKC Phosphorylation S378 
p300 Acetylation K382 
CK2 Phosphorylation S392 
JNK Phosphorylation S33 

Table 7.11. Properties of entities for the p53 modification model in Fig. 7.10. 

entity entity 
type 

type initial mark 

m01 generic object ProtenSet::Initialize(m01,p53::Initialize()) 
m02 generic object CK1::Initialize(m02) 
m03 generic object ATM::Initialize(m03) 
m04 generic object DNAPK::Initialize(m04) 
m05 generic object TFIIH::Initialize(m05) 
m06 generic object MAPK::Initialize(m06) 
m07 generic object PCAF::Initialize(m07) 
m08 generic object PKC::Initialize(m08) 
m09 generic object p300::Initialize(m09) 
m10 generic object CK2::Initialize(m10) 
m11 generic object JNK::Initialize(m11) 

To describe modification in biological processes by enzymes, the ge-
neric processes t01, · · ·, t10 are used. As in Table 7.12, the update func-
tions a13, a14, a15, a16, a17, a18, a19, a20, a21, and a22 of the ge-
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neric processes call the Modify method of the p53 class to simulate the 
modification in biological process by CK1, ATM, DNAPK, TFIIH, 
MAPK, PCAF, PKC, p300, CK2, and JNK, respectively. To describe 
translation and degradation biological processes of p53, the generic proc-
esses t11 and t12 are created, respectively. As in Table 7.12, processes 
t11 and t12 follow connectors with update functions a21 and a22 that 
call the Translation and Degradation methods of the p53 class to 
simulate the translation and degradation biological processes, respectively. 

Table 7.12. Update functions of the p53 modification model with HFPNe in Fig. 
7.10. All update functions are written in Pnuts language (http://www.pnuts.org/.). 
External java classes, CK1, ATM, DNAPK, TFIIH, MAPK, PCAF, PKC, p300, CK2,
JNK, ProteinSet, Enzyme, and Protein are described at http://genomicobject. 
net/public/BiotechBook2004/code/. Connectors a01, · · ·, a10 ave connector
type associate and update function does not exist. 

connector connector type update function 
a11 process m01.Translate(); return m01; 
a12 process m01.Degradation();return m01; 
a13 process m01.Modify(m02); return m01; 
a14 process m01.Modify(m03); return m01; 
a15 process m01.Modify(m04); return m01; 
a16 process m01.Modify(m05); return m01; 
a17 process m01.Modify(m06); return m01; 
a18 process m01.Modify(m07); return m01; 
a19 process m01.Modify(m08); return m01; 
a20 process m01.Modify(m09); return m01; 
a21 process m01.Modify(m10); return m01; 
a22 process m01.Modify(m11); return m01; 

At first glance, the HFPNe model of p53 modification biological proc-
esses seems complicated. However, as in Table 7.12, in the p53 model all 
update functions call a specific method, e.g., Modify, Translation, or 
Degradation. As in Table 7.11, all initial marks of generic entities are 
defined by calling a specific method, i.e., Initialize. Thus, if objects 
with suitable methods that correspond to biological processes are 
orgnaized as a biological process library, the majority of users, biological 
and medical scientists without programming skills, can create biological 
models. But with their expert knowledge of biological processes, they can 
create models by simply assigning a suitable object to a generic entity and 
a suitable method to the update function of the generic connector. 

We can apply the same approach to the previous biological processes. In 
the previous example, generic entities can take type object whose class is 
DNA with transcription method or RNA with translation method 
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instead of string primitive type. Thus, owing to the object extension of 
HFPNe, more complicated biological processes can be easily modeled than 
with HFPN. 

On the other hand, the Gene Ontology (GO) Consortium is trying to 
produce a controlled vocabulary that can be applied to all organisms as 
knowledge of gene and protein roles in cells (Ashburner et al., 2000). By 
applying these gene ontology related vocabularies to names of objects and 
their methods, we can create a more standardized library for biological 
processes with HFPNe. 

7.6 Related Works with HFPNe 

In this section, a new versatile Petri net-based architecture HFPNe is dem-
onstrated for biological process modeling and simulation. HFPNe intro-
duces the notions of generic entities and generic processes to HFPN. In the 
HF- PNe architecture, generic entities can hold various kinds of types, in-
cluding object. With feature and inherited features of HFPN, complex 
biological processes can be effectively modeled. Four biological processes, 
alternative splicing, frameshifting, Huntington’s disease, and multi-domain 
modification process of p53, are employed to show the effectiveness of 
HFPNe. 

From the theoretical point of view in the Petri net community, HFPNe 
can be one of the object-oriented Petri nets (OPN). This approach was first 
given by Becker and Colom [5]. In the community, two advanced Petri 
nets based on OPN architectures have been proposed, Objective Colored 
Petri Nets (OCP-nets) (Maier and Moldt, 2001) and Reference nets 
(Kummer 2001). OCP-nets are based on OPN enhanced by the fusion 
place concept of Hierarchical Colored Petri Nets (HCPNs). With this con-
cept, OCP-nets can dynamically change (shrink or grow) the structure of 
their nets in simulation, a feature that does not exist in HFPNe. Reference 
nets are also based on OPN enhanced by the reference entities concept. 
With this concept, (i) an entity in a net (net1) can hold another net (net2), 
(ii) net2 can move to other entities in the net1 by firing, and (iii) net2 can 
change its state by firing. The differences between them are as follows: 
Reference nets can move the net in simulation processes but OCP-nets 
cannot. However, OCP-nets can create new connection rules in simulation 
processes. HFPNe does not support these OCP-nets and Reference nets 
features. On the other hand, the feature of delay function of HFPNe does 
not exist in the object-oriented Petri nets. However, in a cell various kinds 
of time scale biological processes exist, and to model these biological 
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processes using one model the notion of delay is necessary. With delay 
functions, HFPNe can handle these biological processes efficiently. From a 
theoretical point of view, it may be easy to extend HFPNe to support OCP-
net or Reference net features because an implementation of HFPNe GON 
has been already extended to support the feature to add/remove entities and 
processes during simulation. 

For the reason mentioned in Subsection 7.5.4, we are trying to create a 
biological process library with HFPNe on GON. However, it is difficult to 
create all biological processes at once. Thus, as the first step, all processes 
in the Kyoto Model (Matsuoka et al., 2003) will be recompiled as a part of 
the library. The Kyoto Model is a ventricular cell model that functions by 
compiling classical electro-physiological findings. In the process, we will 
pursue efforts to locate the best approach to systematically reconstruct 
other existing biological process models that are like the Kyoto Model. 
Then we will apply a systematic approach to these other biological process 
models for enriching the library. 

7.7 Genomic Object Net: GON 

In 1999, we surveyed which architecture is suitable when modeling and 
simulating biological processes for biological and medical scientists. We 
concluded that Petri net-based applications are more suitable because of 
their intuitive graphical representation and their capabilities for mathe-
matical analyses. The Petri nets community (http://www.daimi.au.dk/Petri 
Nets/tools/) has many implementations for Petri nets, but many of them 
can model only the DP or the CPN with a poor GUI while Petri net archi-
tectures are defined to be intuitive graphical representations. Fortunately, 
we have found one good tool, named VON++ [81]. VON++ is an applica-
tion based on the HDN and implemented with Delphi [15]. The GUI is so-
phisticated and easy to use by users who know the architecture of the 
HDN. 

However, when modeling and simulating biological processes, we found 
that the HDN architecture should be extended to HFPN for easy modeling, 
as described in Sections 7.2 and 7.3. 

To deal with the extension from the HDN to HFPN, GON− (GON Ver. 
0.919) was released in 2001. This software is also implemented with Del-
phi, and the core architecture is HFPN. Using this software, we have 
shown that we can reorganize and represent various forms of biological 
process information, such as the glycolytic pathway of E. coli (Doi et al., 
2004a), gene regulation of circadian rhythms in Drosophila ((Matsuno et 
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al., 2003c), boundary formation by notch signaling in Drosophila (Ma-
tsuno et al., 2003b), and apoptosis induced by Fas ligand ((Matsuno et al., 
2003c). 

However, when modeling and simulating these biological processes, 
more extensions are needed for two purposes: the architecture and the 
GUI. The first demand for GON− is that the core architecture HFPN should 
be extended to HFPNe as described in Sections 7.4 and 7.5. The second 
demand for GON− is that the GUI should be more user friendly for the ma-
jority of users, who are experts in biological processes but are not experts 
in Petri nets, especially HFPN and HFPNe. 

Thus, we have developed a new Genomic Object Net (GON Ver 1.0) 
[55] with Java from scratch. GON not only inherits basic ideas and con-
cepts from GON−, but also enhances the modeling and simulation ability 
with its core architecture HFPNe. As in Section 7.5, these enhancements 
are useful for modeling and simulation of biological processes – Calci-
tonin/CGRP expression in Subsection 7.5.1, HIV-1 gag-pol expression in 
Subsection 7.5.2, Huntington’s disease in Subsection 7.5.3, and protein 
modification of p53 in Subsection 7.5.4. Moreover, the GUI design is de-
veloped so that users can intuitively model biological processes on GON. 

Subsection 7.7.1 summarizes what kinds of HFPNe features are inher-
ited in GON. Subsection 7.7.2 then describes the new GUI features useful 
when modeling and simulating biological processes, but not present, or in-
sufficiently implemented, in GON−. When modeling and simulating bio-
logical processes in GON−, both expert knowledge of HFPN and biological 
processes were required. However, nearly all users of GON− are biological 
and medical scientists. They have expert knowledge of biological proc-
esses but not of HFPN. Thus, Subsections Graphical Model Canvas, Hier-
archization and Item Collections, and Core Biological Process Library de-
scribe new GUI features that are designed for these users to easily create 
and simulate models with GON. In addition, Subsection Pnuts and Origi-
nal Java Libraries discusses another feature that aids users who have pro-
gramming skills. The GUI feature in Subsections Graphical Model Canvas
and Hierarchization and Item Collections are also important for large-scale 
modeling and simulation of biological processes such as BPE (Nagasaki et 
al., 2004c). Subsection 7.7.3 describes a newly developed XML format for 
modeling and simulation of biological processes, GONML. Subsection 
7.7.4 compares related modeling and simulation application software of 
biological processes with GON. 
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7.7.1 GON Features That Derived from HFPNe Features 

The architecture of GON is HFPNe. This extension was made from the 
viewpoint of modeling biological processes by identifying, inheriting, and 
resolving the merits and demerits of Petri nets, so far defined as follows: 

1. The original Petri net deals with discrete quantities. It is suitable for 
rule-based simulation and other cases in which the quantities can be 
counted as integers. HFPNe inherits all aspects of the original Petri net. 

2. The hybrid Petri net allows quantities to be continuous, in addition to 
supporting the ability of the original Petri net. Thus, biological proc-
esses with ODE-based kinetics can be realized. 

3. The functional Petri net (Hofestädt and Thelen, 1998) allows dynamic 
changes of the network structure to some extent, but deals only with 
discrete quantities. HFPNe is defined to include the extension of this 
ability. 

4. The hybrid object net (Drath, 1998) is defined by enhancing the Petri 
net with hierarchization in the network structure. The hierarchization 
(described in Subection Hierarchization and Item Collections) is useful 
for describing large-scale network structures. This is inherited and ex-
tended in HFPNe. 

5. HFPNe has more data “types” (integer, boolean, string, list, pair,
and object) than the hybrid Petri net, the functional Petri net, and the 
hybrid object net. These types will be useful for modeling complex bio-
logical processes in Section 7.5. 

6. The research on Petri nets, especially discrete ones, has a history of 
more than 30 years. It is mathematically well founded and practically 
well established. The simulation system of HFPNe can benefit from this 
Petri net research. 

7.7.2 GON GUI and Other Features 

Graphical Model Canvas 

In GON, biological processes were modeled on the HFPN editor. On that 
editor, components of HFPN, entity, process, and connector, were drawn 
with simple figures, circle, rectangle, and arrow, respectively, as shown in 
Fig. 7.11(a). However, components of HFPN that model functions or bio-
logical elements in biological processes could have other biological infor-
mation. Representation of this information on that editor will greatly assist 
users in intuitively understanding biological processes in the editor. Thus, 
in GON, an HFPNe editor called the graphical model canvas is developed. 
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The canvas has functions to include pictures to represent every component 
of HFPNe and its background picture for supplementary biological knowl-
edge, and to attach text comments and URL links. In Fig. 7.11(a) and Fig. 
7.11(b), the same biological processes, apoptosis induced by Fas ligand 
(Matsuno et al., 2003c; http://GenomicObject.net/), are modeled on the 
HFPN editor in GON− and the graphical model canvas in GON. As shown 
in these figures, much biological information can be added to the graphical 
model canvas when modeling biological processes. 

The core biological process library and BPE (Nagasaki, 2004, and Na-
gasaki et al., 2004c) extensively use these features of the graphical model 
canvas (suitable images, comments, and links being assigned to each item) 
as shown in Fig. 7.14 and Fig. 7.23. 

Hierarchization and Item Collections 

Hierarchization 

Once a net is created, it is reusable by hierarchization, and a net with hier-
archization is named hierarchized net. The hierarchization assigns a boo-
lean flag, true or false, to all entities and processes in the net. If an en-
tity is assigned true (or false), the entity is called a published entity (or 
an unpublished entity). If a process is assigned true (or false), the proc-
ess is called a published process (or an unpublished process). 

If a hierarchized net is loaded on a canvas, only published entities and 
processes can connect with processes and entities on the canvas. This 
means that unpublished processes, unpublished entities, and all connectors 
in the hierarchized net are hidden and cannot be accessed from compo-
nents on the canvas as in Fig. 7.12. This notion was introduced by Drath 
(Drath 1998) to the Petri net community. The implementation of hierarchi-
zation in GON − was not complete. In GON, the function for entities is im-
plemented and works well. 

Item Collections 

Users can register an item that consists of HFPNe components into the 
item collections, as in Fig. 7.13 (a) and Fig. 7.13 (b). Once registered, the 
item is reusable by choosing the item from the item collections, as in Fig. 
7.13 (c) and Fig. 7.13 (d).
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(a) 

(b) 

Fig. 7.11. Comparison between HFPN editor on GON− and graphical model can-
vas on GON. The same biological processes, apoptosis induced by Fas, are mod-
eled; (a) the biological processes on GON− (Matsuno et al., 2003c); (b) the bio-
logical processes on GON (http://GenomicObject.net/) 



7 Computational Modeling of Biological Processes 217 

 (a) (b) 

 (c) (d)

Fig. 7.12. Usage of the hierarchization. (a) Save a net (say net1) that will be hier-
archized. Set to true entities that will be used on a canvas. Entities p1 and p2 are 
published in the figure. (b) Load net1 onto a canvas. (c) net1 is loaded to the can-
vas. Double circles denote published entities. When loading a hierarchized net to 
the canvas, names of variables in the net are automatically reassigned to avoid 
conflicts with variables of other components on the canvas. Unpublished entity p3
in the hierarchized net is hidden. (d) With the hierarchization feature, users can 
easily reuse already modeled biological processes 

Comparison between a Hierarchized Net and an Item 

Both a hierarchized net and an item in the item collection consists of com-
ponents in HFPNe. The differences between them are as follows. When a 
hierarchized net is loaded on a canvas, only the published entities can con-
nect with processes on the canvas, and no component in the hierarchized 
net is editable on the canvas, as in Fig. 7.12 (c) and Fig. 7.12 (d). In con-
trast, when an item is loaded on a canvas, all entities on the item can con-
nect with processes on the canvas. In addition, all components are editable 
on the canvas, as in Fig. 7.13 (c) and Fig. 7.13 (d). 
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 (a) (b) 

 (c) (d)

Fig. 7.13. Usage of the item collections. Users can register their favorite items into 
the item collections with two steps, (a) and (b), and can reuse the items as (c) and 
(d). (a) Select components that would like to register as an item. The net is the 
same as in Fig. 7.12(a). (b) Assign a unique name to the selected components onto 
the dialog in (b). (c) Select an item in the same dialog in (b), and then load the 
item is onto the canvas. (d) When loading an item onto a canvas, names of vari-
ables in the item are automatically reassigned to avoid conflicts with variables of 
other components on the canvas. With the item collections, users can easily create 
many copies of one item with short steps. The net on the canvas is the same as in 
Fig. 7.12(d), whereas the copies of entity p2 exist on this canvas but do not exist 
on the canvas in Fig. 7.12(d) because the entity p2 is unpublished. This is one of 
the differences between the hierarchization and the item collections 

Because of these differences, their suitable applications are naturally 
different. A hierarchized net is useful when modeling biological processes 
whose internal components, except for published entities, are not neces-
sary. A good example is a hierarchized net that is created from metabolic 
pathway maps of KEGG database with BPE (Nagasaki et al., 2004c). On 
the other hand, an item is useful if it should be edited by users. An exam-
ple is the core biological process library in Subsection Core Biological 
Process Library In many cases, there are more than one hundred compo-
nents in a hierarchized net, while the number of components in an item is 
less. 
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Core Biological Process Library 

A core biological process library is a set of special items in the item col-
lections that consists of various items indexed with biological processes, 
e.g., bind, repress, transcribe, translate, degrade, and translocale, as shown 
in Fig. 7.14. The library was developed (Doi et al., 2004b, Nagasaki et al., 
2004b) with technical knowledge and skills acquired by modeling various 
kinds of biological processes, e.g., the glycolytic pathway of E. coli, gene 
regulation in Drosophila, boundary formation by notch signaling in Dro-
sophila (Matsuno et al., 2003b), apoptosis induced by Fas ligand, Calci-
tonin/CGRP expression in Subsection 7.5.1, HIV-1 gag-pol expression in 
Subsection 7.5.2, Huntington’s disease in Subsection 7.5.3, and protein 
modification of p53 in Subsection 7.5.4. 

Fig. 7.14. Usage of the core biological process library. The snapshot is a sample 
pathway that consists of tree items, trimerization, transcription and translation, in 
the core biological process library 

All items are also assigned valid parameters for simulation so as to 
match with their biological features, e.g., high/low degradation and 
high/low affinity. Owing to these valid assignments for parameters, users 
can create proper simulatable models for biological processes not mainly 
from HFPNe knowledge but from their biological knowledge, with the 
core biological process library as shown in Fig. 7.14. 
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Pnuts and Original Java Libraries 

In GON, all functions in HFPNe, i.e., update function, activity function, 
and delay function, are realized with Pnuts (http://www.pnuts.org/). Pnuts 
is a script language for the Java environment with the following features: 
(i) simple and clean syntax (http://pnuts.org/snapshot/latest/doc/lang- 
TOC.html), (ii) an interactive interpreter, (iii) extensible through its mod-
ule system, (iv) support for dynamic/static translation to JVM bytecode, 
(v) one of the fastest scripting language implementations on JVM, (vii) 
many advantages of Java (e.g., security, portability). 

Pnuts also has a feature to handle basic arithmetic syntax. Thus, if tar-
geting biological processes need to be modeled with basic kinetics, e.g., 
the mass action law, users without programming skills can assign these ki-
netics to functions in GON. 

Moreover, if users have programming skills, especially Java, they can 
develop their original functions with Pnuts or classes with Java and call 
these functions in GON. For example, biological processes in Section 7.5 
extensively use original Java libraries (Nagasaki, 2004). As summarized in 
Table 7.13, script add-ins are not supported in other applications, except 
PathPursuit, which can treat functions with MathML (http://www.scbio.co. 
jp/products/pathpursuit/index. html). 

7.7.3 GONML and Related Works with GONML 

In GON−, only original binary and ASCII formats can be used for input 
and output. Instead of original binary and ASCII formats, in Extensive 
Markup Language (XML) (http://www.w3.org/XML/) users can choose 
tags by writing a schema in a schema language, e.g., Document Type 
Definition (DTD; http://www.w3.org/XML/), XML-Schema (http://www-
.w3.org/TR/xmlschema-0/), or Relax (http://www.xml.gr.jp/relax/). This 
architecture makes XML a generic framework for exchange formats in 
various applications. That is, each application can have an exchange for-
mat as a sublanguage of XML described by a schema, and all such applica-
tions can share generic tools and libraries for XML. Thus, adopting XML 
can reduce a large part of work common in software development. GON 
also adapts an XML format, GONML, as an input and output format of 
biological processes. GONML is the format of HFPNe and its graphical 
representations. GONML format is newly created by the authors, and the 
format with the XML Schema is given in Nagasaki (2004). 
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Table 7.13. A comparison of major software as of 2004. ++ (or +) means the fea-
ture is strongly implemented (or implemented) in the software. 

GON Cell 
Designer E-Cell Virtual 

Cell Gepasi Path 
Pursuit 

Core Algorithm and method. 
HFPNe ODE ODE ODE/PED ODE ODE 
XML input and output. 

GONML SBML 
Original 
Format 

Original 
Format 

Original 
Format 

Original 
Format 

Data Export to CellML. 
+1 − − +3 − − 
Data Export to SBML. 
+2 ++ −7 +3 +3 − 
Simulation 2D Plotting. 
++ ++ ++ ++ ++ ++ 
Advanced Simulation Views. 
++8 − − − − − 
Pathway Editor. 
++ ++ − ++ − ++ 
Metabolic Pathway Modeling and Simulation. 
++ ++ ++ ++ ++ ++ 
Metabolic Pathway Analysis. 
+4 +5 − − ++ − 
Kinetic Based Signalling Pathway Modeling and Simulation. 
++ ++ ++ ++ − ++ 
Rule (Discrete) Based Signalling Pathway Modeling and Simulation. 
++ − − − − +6

Rule (Discrete) and Kinetic Based Signalling Pathway Modeling and Simula-
tion. 
++ − − − − +6

Signalling Pathway Analysis. 
+4 +5 − − − − 
Support Script Language. 
++ Pnuts − − − − +MathML 
Commercialized. 
++ − − − − ++ 
Programming Language. 
Java Java C++ Java C++ C++ 

1A subset of GONML can export to CellML format. 2A subset of GONML can 
export to SBML format. 3A function exists on the application but does not work. 
4We need other Petri net applications. 5Need other SBW applications. 6Some if-
then rule-based modeling/simulation is possible. 7SBML support in future. 
8Supported on GON Visualizer in Section 7.8. 
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As a major standardization project in the Petri net community, the Petri 
Net Markup Language (PNML) is known (Billington et al., 2003). The on-
going project is currently releasing a document type definition (DTD) only 
for basic Petri nets, i.e., DT, CT, CTN, and HPN. Thus, major high-level 
Petri net tools, e.g., Renew (Olaf and Frank, 2000) and Design/CPN 
(http://www.daimi.au.dk/designCPN/), are not equipped with the PNML 
format but with original XML-based file formats. HFPNe is one of the 
high-level Petri net tools. If GONML tries to support the PNML format, 
the PNML format needs to be extensively extended. 

On the other hand, in the biopathway community, the Systems Biology 
Markup Language (SBML) and the Cell Markup Language (CellML) are 
the major modeling formats of biological processes. SBML aims at repre-
senting models of biochemical reaction networks, e.g., metabolic path-
ways, cell-signaling pathways, gene regulatory networks, and many other 
areas in systems biology. The CellML is another major project. The format 
mainly describes the chemical reactions in cells. Their notation can denote 
ODE-based metabolic networks with MathML (http://www.w3.-
org/mathml/). However, currently SBML and CellML can denote ODE-
based chemical kinetics in metabolic networks, but notations of other bio-
logical processes, i.e., cell-signaling pathways and gene regulatory net-
works, are not well organized. Thus, current SBML and CellML format 
can be a subset of GONML format (Nakano et al., 2002). 

7.7.4 Related Works with GON 

Several software packages for modeling and simulating metabolic and sig-
naling pathways have been developed. We have selected six recent well 
known modeling/simulation applications: GON (Doi et al., 2004b, Na-
gasaki et al., 2004b), Cell Designer (http://sbserv.symbio.jst.go.jp/), E-Cell 
(Tomita et al., 1999), Virtual Cell (Schaff et al., 1997), Gepasi (Mendes 
1993), and PathPursuit (http://www.scbio.co.jp/products/pathpursuit/in-
dex.html). Each application possesses some prominent features that are ab-
sent in others, as summarized in Table 7.13. 

From the simulation viewpoint, many algorithms and methods employ 
ODEs. All have simulation graphic displays. From the modeling view-
point, some have pathway drawing editors. 

Gepasi is widely used for both research and education to simulate bio-
chemical systems due to its powerful simulation engine and chemical ki-
netic library. E-Cell develops a system for representation and simulation 
with GUI. A system of reactions is represented with a spread-sheet compil-
ing substances and reactions with ODEs. For reactions which cannot be 
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represented with ODEs, it employs ad hoc user-defined C++ programs. E-
Cell tries to model several biological processes, including biochemical re-
actions in human erythrocyte, signal transduction for bacterial chemotaxis, 
energy metabolism in mitochondria, and lytic-lysogenic switch network of 
λ phage (Tomita, 2001). Unfortunately, E-Cell and Gepasi have no user 
friendly modeling tools, and it is rather complicated to use these applica-
tions for modeling even simple biological processes for users. In Virtual 
Cell (Schaff et al., 1997), a model is defined as a collection where species 
(e.g., calcium and ATP), reactions (e.g., enzyme kinetics and receptor 
binding) and features (e.g., ER and cytosol), and ODEs for kinetic reac-
tions and PDEs for diffusive objects are employed. Biological processes 
can be modeled on online pathway editors. Cell Designer also has a path-
way graphic editor, enabling users to interactively draw biochemical net-
works. Via the System Biology Workbench (SBW) interface, ODE-based 
simulations are possible on other applications that support the SBW inter-
face. PathPursuit also has a pathway graphic editor, enabling users to in-
teractively draw biochemical networks, and ODE-based simulations are 
possible. 

Fig. 7.15. One of signaling pathway models apoptosis induced by Fas in Fig. 
7.11(b) is simulated in GON with 2D plotting graphs (http://GenomicObject.net/) 
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All these applications adapt different XML formats for their inputs/out- 
puts. As in Table 7.13, some applications try to export SBML and CellML 
formats, but their output is inadequate or not yet implemented. The main 
reason is inadequate definition for biological processes in SBML and 
CellML formats, as mentioned in Subsection 7.7.3. 

At the beginning of Section 7.7, we have started to develop modeling 
and simulation applications of biological processes with Petri nets because 
of their intuitive graphical representation and their capabilities for mathe-
matical analysis. GON inherits these features directly (Subsection 7.7.1) 
and extends them (Subsection 7.7.2), and possesses various features better 
than other applications, as shown in Table 7.13. 

7.8 Visualizer 

In GON, when modeling biological processes, users can directly apply 
their biological knowledge on the graphical model canvas with the core 
biological process library of Subsection Core Biological Process Library,
and HFPNe basic components can assign various biological information, 
e.g., mRNA/DNA sequence and related publications, in Subsection 
Graphical Model Canvas. Because all items in the library are assigned 
valid parameters for biological processes, e.g. transcription, translation, re-
pression, expression, binding, degradation, and translocation, users can 
create simulatable models without much knowledge about the architecture 
of GON, i.e., HFPNe. 

However, in GON, simulating states of biological processes can be 
viewed only as 2D time series graphs as shown in Fig. 7.15. If the simula-
tion status is shown with suitable views of the biological processes, it will 
promote understanding of the dynamic activity for biological processes 
and also assist users to refine their models in GON. Therfore, we have de-
veloped a tool, GON Visualizer [18, 44, 55], which can faithfully visualize 
these biological processes, as illustrated in Fig. 7.16. Other modeling and 
simulation applications in Table 7.13 – Gepasi, Cell Designer, E-Cell, and 
PathPursuit – do not have applications like Visualizer. 

Data exchange between GON and Visualizer are realized in the follow-
ing static and dynamic ways. 

In the static way, simulation results are logged as CSV files in GON, 
and these output files are used in Visualizer. The static data exchange will 
be used when simulation results in GON or other applications need to be 
repeatedly animated in Visualizer. 
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Fig. 7.16. The simulating data on GON in Fig. 7.15 is accessed via CORBA and 
animated on Visualizer 

The dynamic data exchange is achieved with CORBA (http://www.-
omg.org/) which is one of distributed object technologies. Thus, the simu-
lation status in GON is directly displayed in Visualizer. In addition, simu-
lation and visualization can be performed on separate computers. Cur-
rently, large-scale pathway models need to simulate in GON as BPEs 
(Nagasaki et al., 2004c), and a high performance computer is desirable. 
Users may also wish to compare dynamic simulation differences among 
pathways, such as a normal pathway simulation and a pathway with an 
overexpressed/knockout gene. To achieve this, multiple data connections 
between a set of GON applications and a set of Visualizer applications via 
CORBA are supported. 

Visualizer adopts original XML format as its input. By writing XML 
files for Visualizer, users can realize personalized visualizations for data 
that are statically and dynamically generated in GON. The XML format of 
Visualizer is written by DTD format. In Nagasaki (2004), we described 
how to create basic animations on Visualizer with illustrations, while de-
scribing usages of tags and attributes of the XML in Visualizer. In short, 
the XML format consist of two parts; (i) firstly, the XML format defines 
actors with graphical images in an animation, and (ii) secondly, the XML 
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format defines which output of simulation (simulating) results in GON and 
other applications should be assigned to which animation attributes in ac-
tors, e.g., speed, color, size, and number of actors. 

Subsection 7.8.1 describes how to express basic biological processes 
with Visualizer. Subsection 7.8.2 discusses the related work with Visual-
izer. 

7.8.1 Bio-processes on Visualizer 

With the XML format of Visualizer in Nagasaki (2004), we express basic 
biological processes – transcription, translation, repression, expression, 
binding, degradation, and translocation – with XML, and illustrate anima-
tions on Visualizer in Fig. 7.18, Fig. 7.20, and Fig. 7.22. It should be noted 
that these animations are just examples, and users can freely create other 
animations of their own interests. 

Transcription and Translation 

In a cell, copying DNA sequences in a form of mRNAs is called transcrip-
tion, and generating proteins from mRNAs is called translation. Transcrip-
tion and translation states can be plotted on a 2D time series graph in 
GON, as in Fig. 7.15. However, applying the facts transcriptions occur in 
nucleus and translations occur at ribosomes in cytoplasms, better views 
can be created in Visualizer as shown in Figs. 7.18 (a)–(d) with the XML 
file in Fig. 7.17. Figs. 7.8(a)–(d) are arranged chronological order; the cir-
cle in the center is the nucleus and the rounded rectangle (excluding the 
portion of the circle) is the cytoplasm. In Fig. 7.18(b), to show that tran-
scription of mRNA starts in the nucleus, wavy lines are displayed in the 
circle, and in Fig. 7.8(c), to show that translation of protein from mRNAs 
has begun, small circles are displayed. Because the number of the mRNA 
and the protein images on the window correspond to that of the data in 
GON, users can grasp the abstract number of these, as shown in Figs. 
7.18(c) and (d). Both figures display mRNAs and proteins, but their num-
bers are different. 
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Fig. 7.17. An XML file that represents transcription and translation in a cell. An-
imations on Visualizer are shown in Fig. 7.18. The usages of tags and their attrib-
utes are described in Nagasaki (2004) 
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 (a) (b) 

 (c) (d)

Fig. 7.18. Animations of the XML file in Fig. 7.17. Figs. (a)–(d) are arranged in 
chronological order. In these figures, a circle in the center illustrates a nucleus and 
a rounded rectangle, excluding the circle, illustrates a cytoplasm. Wavy lines on 
the nucleus in (b)–(d) are mRNAs, and small circles in the cytoplasm are trans-
lated proteins from the mRNAs. Transcription/translation starts between (a) and 
(b)/(b) and (c), respectively. As in (c) and (d), the number of mRNAs and proteins 
is increasing 

Repression, Expression, and Binding 

In biological processes, repression and expression are often used when a 
function of a protein, DNA, and mRNA is increased and decreased, re-
spectively. These biological processes are sometimes realized with another 
biological process, bind. One of the meanings of “to bind” is that a protein 
tightly makes contact with a specific DNA sequence or with other proteins. 
For example, a protein binds to a specific DNA sequence and represses the 
transcriptional activity of an mRNA. The transcriptional activity can be 
measured with the 2D time series graph in GON by comparing simulation 
results with repressor proteins and without them. However, efficient visu-
alization can be created on Visualizer with AnimeMultiObjects and 
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AnimeMultiMotion. AnimeMultiObjects can represent the mRNA 
and the protein. DNA AnimeMultiMotion can represent the binding status 
of the protein to the specific DNA sequences. 

Figs. 7.20 (a)–(d) are arranged in chronological order. In these figures, a 
rectangle in the center illustrates DNA sequences and the subcomponent 
with a gray regin in the rectangle illustrates transcriptional DNA se-
quences. In (a), mRNAs are translated from the transcriptional place and 
displayed with wavy lines. In (b), repressor proteins appear (two proteins 
appear), and in (c) the repressor protein makes contacts with the transcrip-
tional place and inhibits the activity of the mRNA transcription. After the 
event, mRNAs gradually degrade and, in (d), all mRNAs disappear. 

Fig. 7.19. An XML file that creates animations in Visualizer. The XML file repre-
sents a transcription of mRNA from specific DNA sequences that is inhibited by a 
repressor protein in the nucleus. Animations on Visualizer are illustrated in Fig. 
7.18. The usages of tags and their attributes are described in Nagasaki (2004) 
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Degradation 

In a cell, nearly all mRNAs and proteins fragment into parts at certain 
speeds. This fragmentation activity is called degradation. In many cases, 
degradation speeds of proteins are regulated by other proteins that make 
contact with them. In these cases, the degradation status can be displayed 
with a 2D time series graph in GON. Intuitive visualization can be created 
in Visualizer with AnimeMultiObject, whose attribute event references 
the number of transcribed products, as illustrated in Figs. 7.20(c) and (d). 
In Fig. 7.20(c), a repressor protein binds to specific DNA sequences that 
are used to transcribe an mRNA. After the event, the mRNA cannot be 
translated from the sequences. As Fig. 7.20(d) shows, all mRNAs degrade 
and disappear from the cell. 

 (a) (b) 

 (c) (d)

Fig. 7.20. Animations of the XML file in Fig. 7.19. Figs. (a)–(d) are arranged in 
chronological order. In these figures, a rectangle in the center illustrates a DNA 
sequence and the subcomponent with the gray regin in the rectangle is the tran-
scriptional DNA sequence. In (a), mRNAs are translated from the transcriptional 
sequences and are displayed with twisted images (three mRNAs appear). In (b), 
(two) repressor proteins appear, and, in (c), the repressor protein makes contact 
with the transcriptional place and inhibits the mRNA transcription. After the 
event, mRNAs gradually degrade and, in (d), all mRNAs disappear 
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Translocation 

In biological processes, translocation means that proteins, mRNAs, or 
other materials move from positions to other positions with regulations. 
For example, a protein can make contact with another protein, and the 
generated complex acquires the ability to translocate from the cytoplasm to 
the nucleus. In GON, it is difficult to analyze translocation activities with 
the 2D time series graph. However, easy visualization can be created on 
Visualizer with AnimeMultiObject and AnimeMultiMotion, whose at-
tribute event references the number of the complex, as illustrated in Figs. 
7.22(a)–(d) with the XML file in Fig. 7.21. 

In (a)–(d), the circle in the center illustrates the nucleus, and the rounded 
rectangle (excluding the circle) is the cytoplasm. In (a), no protein exists. 
After short periods, as shown in (b), two types of protein appear; one pro-
tein with a small circle appears at the top right and the other with an small 
orange circle appears at the bottom right. These two types of proteins 
move and make a complex somewhere between the places where they ap-
peared, as in (c). These complexes translocate from the contact position to 
the nucleus, as in (d). 

7.8.2 Related Works with Visualizer 

As shown in Table 7.13, several software packages for modeling and simu-
lating biological processes have been developed. All applications have 2D 
plotting windows for visualizing simulation results, and many applications 
have graphical modeling editors. 

However, none of the applications can create customized views to grasp 
the dynamic states for biological processes comparable to Visualizer in 
Figs. 7.16, 7.18, 7.20, and 7.22. From an information science point of 
view, Visualizer makes little contribution. However, we believe an anima-
tion tool for biological processes is useful because (i) it makes it easier for 
users to capture simulation results in GON, as in Subsection 7.8.1 and (ii) 
it is an effective communication medium, e.g., presentation and education 
in biological and medical fields. 

Actually, well known textbooks for molecular biology, Molecular Biol-
ogy of the Cell and Molecular Cell Biology, include animations of biologi-
cal processes with Quicktime or Flash on CDROMs or online [51]. Part of 
these biological processes are already treated in Visualizer, as in Subsec-
tion 7.8.1. The difference between animations whether or not they are read 
only; once Visualizer XML files are created, Visualizer can create anima-
tions according to simulation results in simulators, especially in GON. 
Thus, once all biological processes in these textbooks are modeled in GON 
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and Visualizer XML files are created as in the apoptosis models in Figs. 
7.16., users can easily observe what will happen if the original biological 
processes, e.g., wild type, are modified, e.g., mutant and drug treatment, 
and we can improve our understanding of the mechanisms of biological 
processes in these textbooks. 

Fig. 7.21. An XML file that creates animations in Visualizer. The XML file repre-
sents a translocation of a complex that consists of two proteins. These two proteins 
are generated in the cytoplasm. Animations on Visualizer are illustrated in Fig. 
7.22. The usages of tags and their attributes are described in Nagasaki (2004) 
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 (a) (b) 

 (c) (d)

Fig. 7.22. Animations of the XML file in Fig. 7.21. In (a)–(d), the circle illustrates 
the nucleus, and the rounded rectangle, excluding the circle, illustrates the cyto-
plasm. In (a), no protein exists. After short periods, as shown in (b), two types of 
protein are created; one protein is represented with a small circle that appears at 
top right; the other is represented with a small circle that appears at the bottom 
right. These two types of proteins move and make a complex where between the 
places where they appeared, as in (c). These complexes translocate from the con-
tact position to the nucleus, as in (d) 

7.9 BPE 

Several pathway databases are publicly available, such as the Kyoto Ency-
clopedia of Genes and Genomes (KEGG; Kanehisa and Goto, 2000), Bio-
Cyc (Karp et al. 2002, 2002), and WIT (Overbeek et al., 2000). On the 
other hand, there are many modeling and simulation applications, as de-
scribed in Subsection 7.7.3. Unfortunately, these modeling and simulation 
applications cannot reuse pathway databases efficiently. Because the first 
aim of public pathway databases is to reorganize biochemical information 
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for usage on computers for users, e.g., for searching interesting pathways 
and making customized views for targeting pathways, and their aim is not 
to model and simulate. Thus, we have developed conversion processes that 
can automatically convert these pathway databases to HFPNe models so 
that the converted pathways can be remodeled and simulated on existing 
applications. In addition, based on the conversion process, we have also 
developed an application, Biopathway Executer (BPE) [53, 56], that re-
constructs two major pathway databases KEGG and BioCyc to executable 
XML formats, i.e., GONML, for existing modeling and simulation plat-
forms. BPE can create large-scale executable pathways from sets of KEGG 
and BioCyc maps while keeping the features of the original maps, as in 
Fig. 7.23. Advanced features of BPE are as follows: 

1. Executable metabolic pathways with various abstraction levels can be 
generated, e.g., when a simpler discrete conversion process is selected; 
DP structural analyses can be applied with Petri net tools; and when 
continuous conversion process with ODE-based kinetics are selected, 
an ODE-based simulation can be applied. 

2. Major pathway representation formats, SBML and CellML, are subsets 
of GONML. Thus, the output of an ODE-based conversion process by 
BPE can be used on applications that support SBML or CellML. 

3. Original large-scale editable and executable maps can be generated 
from sets of maps in pathway databases. 

4. Starting from an executable metabolic model using BPE, users can 
construct finer models by themselves with biological knowledge and 
experimental data. 

5. Applying hierarchization when generating a pathway with BPE, the 
pathway can always be automatically synchronized with recent origi-
nal pathway databases. 

We are also developing a public online service that extensively use BPE 
and GON, BPE Online Service (BPEOS). BPEOS consists of two services: 
(i) a download service that supplies XML files of GONML format for 
metabolic pathway maps in KEGG and (ii) a display service that supplies 
clickable image maps of all metabolic pathways in KEGG. The details of 
BPE and BPEOS are described in (Nagasaki, 2004, and Nagasaki et al., 
2004c). 
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Fig. 7.23. A snapshot of the executable largescale metabolic pathway with 2D 
plotting graphs and animations using BPE. The map compiles 30 maps that are 
categorized into carbohydrate metabolism in KEGG. The executable map contains 
more than 10,000 HFPN components. Many substrates and products exist on the 
map but are not displayed, because they are also removed from the KEGG map for 
human readability 
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7.10 Conclusion 

To accomplish the objective in Section 7.1, we discussed the importance of 
a biological processes development environment that can easily and 
smoothly support (i) modeling of biological processes, (ii) simulation of 
biological processes, (iii) visualization of their simulations, and (iv) inte-
gration of existing biological pathway databases for modeling, and we de-
veloped their applications, (i/ii) GON, GONML, (iii) Visualizer, and (iv) 
BPE, BPEOS, while developing the new Petri net-based architecture 
HFPN/HFPNe that is suitable for modeling and simulation of complex bio-
logical processes. 

It must be noted that in our development environment, one unknown 
biological phenomenon in multicellular systems was discovered (Matsuno 
et al., 2003b). In Matsuno et al. (2003b), the mechanism of Notch-
dependent boundary formation in the Drosophila large intestine is ana-
lyzed by comparing experimental manipulation of Delta expression with 
modeling and simulation results in our development environment. Bound-
ary formation representing the situation in normal large intestine was 
shown by the simulation. By manipulating the Delta expression in the 
large intestine, a few types of disorder in boundary cell differentiation 
were observed, and similar abnormal patterns were generated by the simu-
lation. These simulation results suggest that values of parameters which 
represent the strength of cell-autonomous suppression of Notch signaling 
by Delta are essential for generating two different modes of patterning; 
lateral inhibition and boundary formation, which could explain how a 
common gene regulatory network results in two different patterning modes 
in vivo.

The fact that the discovery was accomplished in our environment is im-
portant. Another important thing is the process of discovery; the project 
members, mainly Matsuno and members of the Murakami developmental 
biology laboratory, have weekly communicated the biological processes by 
modeling and simulating in our development environment, the GON and 
Visualizer. These two facts reveal comprising the concepts of our objective 
are important, and our architecture and applications are acceptable in ac-
tual research fields. 
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8.1 Introduction 

Computing technologies have played an increasingly important role in bi-
ology since the launch of Human Genome Project (Carol and Robert, 
1996). Parallel computing, which acts as an effective way to speed up bio-
logical computing, has been used in many biological applications. Se-
quence assembly and sequence alignment are the most computing inten-
sive parts of biological computing. They have benefited immensely from 
parallel computing, and will benefit more from further research on parallel 
biological computing. This chapter introduces recent developments in par-
allel sequence assembly and alignment. 

Sequence assembly (Myers, 2002), also called fragment assembly, is 
used to recover fragments and build the original sequences. This is a very 
important step in DNA sequencing. Due to the large amount of biological 
data, it will take a very long time to assemble the fragments of a middle-
sized genome such as rice. A parallel Euler sequence assembly approach is 
discussed in this chapter. This approach stores all the genomic data in the 
form of distributed hash table so as to assemble this data as a whole. This 
eliminates errors incurred by approximately partitioning the fragments into 



244 Wei Shi et al. 

groups and assembling them into groups, as in other approaches. Further, 
our system can be run on networks of workstations or an supercomputers. 
It is particularly suitable for those having no access to supercomputers but 
to other computing resources such as workstations and PCs that are con-
nected by a local network. This is the first effort to parallelize the Euler 
sequence assembly algorithm to assemble a large-scale genome. Sequence 
alignment (Liming et al., 2000) is also an important research area in bioin-
formatics. There are innumerable biological sequences with unknown 
structure and function. The alignment of these sequences to known se-
quences will yield insight into the unknown sequences if the two are simi-
lar. Sequence alignment can be further divided into multiple sequence 
alignment (MSA) and pair wise sequence alignment. The main purpose of 
an alignment is to propose homologies between sites in two or more se-
quences, but it is also a necessary step in judging homology between se-
quences or genes. The use of pair wise alignments is usually aimed at lat-
ter, while multiple alignments are used to assess homology between sites 
in many sequences. 

Pairwise sequence alignment has the following significance: 

• It can used to categorize and classify the DNA or protein sequences. 
The comparison between an unknown sequence and a known sequence 
can yield an insight into whether the two sequence are in the same cate-
gory.  

• Evolutionary relationships can be obtained by pair wise sequence as-
sembly that identify the common parts of the two sequences. 

• The DNA sequence can be aligned with the protein sequence to deter-
mine the function of the DNA sequence. The function of the unknown 
DNA sequence can also be known by comparing this sequence to 
known DNA sequences. 

• The three dimensional structures of the protein sequence can be pre-
dicted by comparing it with the sequence of known dimensional struc-
tures. 

• Pair wise sequence alignment is helpful in sequencing new genes. Mul-
tiple sequence alignment has shown significance in the following 
scopes: 

• The shared homological regions of multiple sequences can be identified 
by taking advantage of MSA, which is very important for research in 
genetic diseases. 

• MSA is often used to determine the consensus sequence of several 
aligned sequences. 
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• Secondary and tertiary structures of an unknown sequence can be pre-
dicted by comparing this sequence with multiple known sequences. 

• MSA is a preliminary step in molecular evolution analysis using phy-
logenetic methods for constructing phylogenetic trees. 

We parallelize the most used sequence alignment tools. For pair wise 
sequence alignment, we parallelize the Smith-Waterman algorithm (Tem-
ple and Michael, 1981). We also parallelize the Clustal W (Julie et al., 
1994) multiple sequence alignment tool. These parallelizations, not only 
speed up biological computing, but also reduce the overall memory re-
quirement by making use of the parallel computing technologies we de-
velop. 

The introduction to parallel sequence assembly and alignment is given 
in Section 1. Section 2 discusses issues with the parallel sequence assem-
bly, including the Euler approach, parallel algorithms, determination of 
coverage, and implementation. Parallel pair wise sequence alignment is in-
troduced in Section 3. Smith-Waterman algorithm and its parallelization 
are described. In Section 4, we present the parallelization of the Clustal W 
multiple sequence alignment tool. Load balancing and communication 
overhead, which play important roles in parallel computing, are discussed 
in Section 5. This chapter concludes with a discussion on the areas of re-
search that need be focused on in the future.  

8.2 Large-Scale Sequence Assembly 

8.2.1 Related Research 

Sequence assembly is used to recover the fragments that are broken from 
DNA sequences and assemble them into the original sequences. Currently, 
the most widely used approach for breaking DNA sequences is whole ge-
nome shotgun (WGS), which is less expensive and quicker than other ap-
proaches (Weber and Myers, 1997). The WGS fragments the genome into 
many pieces of various sizes. This fragmentation can be done in several 
ways, such as physically shaking the DNA and cutting it with restriction 
enzymes. The following is an example that illustrates the basic idea behind 
WGS. In real genome sequencing, both the genome and the read will be 
much longer than the genome and the read in the example. 
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Example: 
Genome: 

ATGCGTAGCTGTAGTGATCGAGGTCCAAGTAGCTGT 
Reads from first copy:

ATGCGTAG, CTGTAGTG, ATCGAGGT, CCAAGTAG, 
Reads from second copy:

GTAGCTGT, AGTGATCG, AGGTCCAA, GTAGCTGT

This example gives a simple and ideal whole genome shotgun. There are 
only two copies of the genome, and all the reads are of same size. There is 
no sequencing error, and all the nucleic acids have been identified. Each 
copy is broken into many reads. We cannot assemble the reads from one 
copy into the original genome because of lack of the information about 
their relative positions, called “context”. At least two copies of the genome 
are therefore required to have context information available among the 
reads. We can see an example of this information by observing that the 
suffix of the first read from the first copy “ATGCGTAG”, and the prefix 
of the first read from the second copy “GTAGCTGT”, are the same. This 
overlap between the two reads can let them be joined into 
“ATGCGTAGCTGT”. A very challenging problem for sequence assem-
bly is the “repeat” problem. That is, the assembler cannot distinguish well 
between the overlap and the repeats of reads. “GTAG” is an overlap be-
tween the two reads above, but it is also a repeat as shown in the genome 
in the example (the nucleic acid in boldface). Although the suffix of the 
first read from the first copy “ATGCGTAG” is the same as the prefix of 
the last read from the second copy, “GTAGCTGT”, this is not the overlap 
we have seen between the reads “ATGCGTAG” and “GTAGCTGT”.
An assembly error will be produced if the two reads are joined together 
with repeat rather than overlap. It should be noted that in real genome se-
quencing the suffix and prefix of two reads with overlap or repeat are not 
necessarily exactly the same. Our example tries to explain this problem in 
a simple way. 

The “repeat” problem had not been solved well until a new sequence as-
sembly approach was proposed (Pavel et al., 2001). This approach reduces 
the sequence assembly problem to a variation of the classical Eulerian path 
problem, which has been demonstrated to be more accurate than other ap-
proaches. This Euler approach has a polynomial computing complexity 
rather than the exponential complexity of other approaches. Other se-
quence assembly programs fall into the “overlap-layout-consensus” para-
digm, which was abandoned in Pevzner’s approach. The following is a de-
scription for the three stages of the “overlap-layout-consensus” paradigm 
(Myers, 2002; and Kececioglu and Myers, 1995): 
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• Overlap – finding potentially overlapping fragments. 
The overlap problem is to find the best match between the suffix of one 
sequence and the prefix of another. If no sequencing errors occur, sim-
ply find the longest suffix of one string that exactly matches the prefix 
of another string. Because errors often occur in the process of sequenc-
ing, a common practice is to use the filtration method and to filter out 
pairs of fragments that do not share a significantly long common sub-
string. 

• Layout – finding the order of fragments. 
Many algorithms select a pair of fragments with the best overlap at 
every step. The selected pair of fragments with the best overlap score is 
checked for consistency. If this check is accepted, the two fragments are 
merged. At later stages of the algorithm, the collections of fragments 
(contig) – rather than individual fragments – are merged. The difficulty 
with the layout step is in deciding whether two fragments with a good 
overlap really overlap (i.e., their differences are caused by sequencing 
errors) or represent a repeat in a genome (i.e., their differences are 
caused by mutations).

• Consensus – deriving the DNA sequence from the layout. 
The simplest way to build a consensus is to report the most frequent 
character in the substring layout that is implicitly constructed after the 
layout step is completed. The weakness of this paradigm is that it cannot 
effectively solve the problem of fragment repeat, i.e., it cannot distin-
guish between fragment overlap and fragment repeat. It is a NP-hard 
problem to assemble the fragments under this paradigm. The software 
under this paradigm includes Phrap (Green, 1999), TIGR (Sutton et al., 
1995), CAP3 (Huang and Madan, 1999), and Celera Assembler (Bon-
field et al., 1995). 

• Phrap – Phrap (“phragment assembly program”, or “Phil’s revised as-
sembly program”) is a program for assembling shotgun DNA sequence 
data. Some of its key features are: (1) allowing use of the entire read, 
not just the highest quality part; (2) using a combination of user supplied 
and internally computed data quality information to improve accuracy 
of assembly in the presence of repeats; (3) constructing contig se-
quences as a mosaic of the highest quality parts of reads. 

• TIGR – The TIGR Assembler is a sequence fragment assembly program 
building contigs from small sequence reads. It uses a greedy algorithm 
and heuristics to build contigs, find repeat regions, and target alignment 
regions. Sequence overlaps are detected and scored using a 32-mer hash. 
Sequence alignment and merging is done using a Smith-Waterman algo-
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rithm. Gap penalties and score values corresponding to the bases and 
their quality values are predefined and hard coded into the program. 

• CAP3 – CAP3 uses base quality values in the computation of overlaps 
between reads, construction of multiple sequence alignments of reads, 
and generation of consensus sequences. It also uses forward-reverse 
constraints to correct assembly errors and link contigs. 

• Celera Assembler – Celera Assembler accepts an overlap only if there is 
no other sequence in the genome with ≥ 94% sequence identity. Accord-
ingly, fewer true overlaps are accepted in the initial assembly stage. In 
later stages of the Celera assembly, contigs are linked together by using 
mate-pair information, and the resulting gaps are then filled by various
methods that may use sequences not included in the initial stages. 

It is well known that one of the challenges to biological computing is 
the large amount of biological data and the colossal computing capacity 
required to process this data. Although Euler sequence assembly algorithm 
has a lower computing complexity than other approaches, it still needs a 
lot of time to assemble those biological fragments for small or middle 
sized genomes. Parallel computing is an efficient way to solve computing-
intensive problems, and sequence assembly has shown good parallelism 
that can be exploited (Rajkumar, 1999; Terry et al., 2003; and Wei and 
Wanlei, 2003). In fact, parallel computing has been used in the current se-
quence assembly, for example, in sequencing the genome of the human be-
ing in the Human Genome Project. Many computing nodes have partici-
pated in the process of assembling fragments from the human genome. But 
this is not “real” parallel computing for sequence assembly because, in this 
approach, all fragments have to be first partitioned into many groups 
whose size is suitable for assembling in a single computing node. Frag-
ments from one group can be assembled only with other fragments within 
the same group. So, each computing node can assemble the fragment only 
from perspective of a group, and not the whole genome. The partition of 
the fragments is conducted sequentially and may produce errors. These er-
rors will result in incorrect sequence assembly because the assembly is 
confined to individual groups and cannot cross these groups. 

But, in our approach, the parallel sequence assembly is carried out by 
each computing node from the view of the whole genome. Each fragment 
can be visited by each computing node. Each node can assemble any frag-
ment into its local assembly result. The assembly is conducted by all the 
computing nodes in parallel. This is a “real” parallel sequence assembly 
approach because it is genome oriented, not group oriented. We are the 
first to propose such a real parallel approach. 
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8.2.2 Euler Sequence Assembly 

The Euler sequence assembly approach was proposed by Pavel A. Pevzner 
(Pavel et al., 2001). The main contribution of the Euler assembly approach 
is that it transforms the biological sequence assembly problem into an 
Euler path problem that has a polynomial solution, which is a solution to 
the notorious “repeat” problem. 

In the Euler sequence assembly approach, tuples are the minimal units 
to be assembled, rather than the reads as in other approaches. Tuples are 
generated from reads. Tuples from one read are all the substrings of that 
read with the same length, which is normally 20. All the tuples generated 
form a debruijn graph. The vertices of the graph are the tuples. Supposing 
the length of a tuple is l, if the last l-1 nucleotide acids of one tuple are the 
same as the first l-1 nucleotide acids of another tuple, there will be a di-
rected edge in the graph which connects these two adjacent tuples. The 
Euler assembly approach is to find all the Euler paths in the graph. Each 
path is in fact a contig. The core of the Euler approach is the consistency 
analysis rule which solves the problems of path selection for branches 
when looking for Euler paths in a graph. The details for the consistency 
analysis rule can be found elsewhere (Pavel et al., 2001). 

8.2.3 PESA Sequence Assembly Algorithm  

Biological sequence assembly often costs a lot in computing time even for 
small or medium sized genomes because of the large magnitude of itera-
tive computing. But most of the current assemblers are sequential pro-
grams. Biological data has to be partitioned before applying these pro-
grams to assemble the genome. The participation is conducted according to 
similarities. This process is not accurate. So errors could be introduced by 
the participation. These errors cannot be corrected by the assemblers. 
Thus, the sequential assembler cannot meet the requirements demanded by 
sequence assembly. The research on the parallel sequence assembler is just 
at its beginning. Our parallel sequence assembler is the first to use the par-
allel Euler approach. This section introduces the algorithm and implemen-
tation of our PESA sequence assembler. 

Main idea 

The PESA (Parallel Euler Sequence Assembly) algorithm we proposed is 
an effective parallelization of the Euler sequence assembly approach that 
includes data distribution and computation distribution. The data distribu-
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tion is conducted first. Tuples are generated from all the reads and stored 
in a distributed hash table. A distributed hash table will take maximal ad-
vantage of the memory resources of a parallel computing platform. With 
more computing nodes or memory added to the computing platform, the 
hash table can accordingly become larger and accommodate more genome 
data. This table is evenly distributed over multiple computing nodes, and 
each node is responsible for its own part of the hash table. No single hash 
table containing all the data will eliminate the bottleneck for storing a large 
amount of genome data. 

We use the djb2 hash algorithm to calculate the hash values for all tuple 
strings. Given a tuple string s, we calculate its hash value h = djb2(s). Sup-
posing the number of computing nodes is p and the size of the hash table is 
t; the size of the partial hash table on each node is t/p. The number of the 
computing node to which s will be assigned is h%(t/p). Each tuple will be 
stored in the corresponding partial hash table on some computing node. 
We use linked list to deal with the collision occurring in the hash table. 
Tuples with the same hash value will be put into the same linked list of the 
hash table in their processing order. After storing all the tuples in the hash 
table, we need to calculate the multiplicity of each tuple, which will de-
termine how many times the tuple will appear in the final contigs. Multi-
plicities of all the tuples will be used to judge when the assembly process 
should finish. Only when the number of times that each tuple is visited 
equals its multiplicity will the assembly finish. This means all the tuples, 
not including their copies, have been assembled into contigs. 

Based on the tuples stored in the local hash table, each computing node 
will start to assemble the tuples. The parallel assembly algorithm is de-
scribed as follows: 

Input: hash table and reads 
Output: contigs 

1. Take the first tuple t from the local hash table whose counter is bigger 
than 0. t is an initial contig. 

2. Look for tuples adjacent to t on the right. If there is only one such tu-
ple, and this tuple is on the same computing node, join the tuple di-
rectly to t. If this tuple is on some other computing node, this comput-
ing node will communicate with the remote computing node to request 
this tuple. If the counter of this tuple is bigger than 1, it can be joined 
into the current contig. It is the responsibility of the remote computing 
node to decrease the counter for this tuple by 1. If the number of tuples 
adjacent to t is more than 1, apply a consistency analysis rule to deter-
mine if there exists one, and only one, tuple that can be joined to the 
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contig. If so, join the tuple to the current contig if it is located on the 
same computing node. If it is located on another computing node, 
communicate with that node to join the tuple with the current contig, if 
possible. 

3. Check if there are requests from other computing nodes and serve 
them if found. 

4. Repeat (2) and (3) until the current contig cannot be extended any 
longer to the right because of no more tuples being available, counters 
of adjacent tuples becoming 0, or consistency analysis failing to de-
termine which path the current contig should follow. 

5. Look for tuples adjacent to t on the left, and deal with these tuples in 
the same way as described in (2), (3), and (4). 

6. If there are tuples in the local hash table whose counters are bigger 
than 0, go to (1). Otherwise, the assembly process on this computing 
node finishes and the contigs generated will be sent to the master com-
puting node. 

7. The master computing node merges the contigs from all the nodes into 
the final contigs. 

The counter for each tuple is initialized to be the multiplicity of the tu-
ple, which describes how many times the tuple will appear in the final as-
sembly result. The details for the counter can be seen in Section 3.2. Our 
parallel sequence assembly approach will extend the contigs from both the 
right direction and left direction, as shown in (2) and (5). This will help in-
crease the lengths of the contigs generated by individual computing nodes, 
and thus reduce the computation to be carried out by the merging process, 
which merges all the partial contigs from all computing nodes. The re-
duced computation is in fact distributed over each computing node and 
executed in parallel. 

The computing nodes involved assemble the tuples according to their 
local hash tables and generate contigs in parallel. Each node needs to 
communicate with others because the tuples to be joined to the current 
contig will possibly lie in other computing nodes. Details of communica-
tions among the computing nodes can be seen from (2) and (3). After one 
tuple is processed, each node will serve the request from other nodes so as 
to ensure that other nodes will not waiting for a long time to receive the re-
sponse. This will produce a better utilization of the parallel system. 

Finally, the master computing node will collect all the contigs from the 
slave nodes to assemble them further into the final result. The master node 
has no difference from other nodes except for the merging process. The 
merging process will also use a consistency analysis rule to assemble the 
current contigs into longer ones. The process is very similar to the assem-
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bly process discussed above. The tuples on both ends of every contig will 
be analyzed to see if they can be concatenated with other contigs. The 
merging process continues to assemble contigs until no more contigs can 
be joined. 

Determination of coverage 

The completion of the parallel Euler sequence assembly process depends 
on the coverage of the genome to be sequenced. Supposing the coverage of 
some genome is m, the number of a tuple that appears only once in the ge-
nome will ideally be m. The number of a tuple that appears more than once 
in the genome will ideally be a multiple of m. The number of a tuple ap-
pearing in the final assembly result should be the number of its appearing 
in the genome divided by m, i.e., multiplicity. We set a counter for each 
tuple that is initialized to its multiplicity. Each time a tuple is assembled, 
its counter will be decreased by 1. The parallel assembly process will fin-
ish when the counters of all tuples become zero. 

In order to calculate the multiplicities of all the tuples, we have to know 
the coverage of the genome, which is in fact the number of copies of the 
genome to be sequenced. Generally, we can not get this information di-
rectly. In our approach, we calculated the coverage of the genome from 
statistics of all kinds of tuples with different numbers of their appearing in 
all the reads to be assembled. We define Si as a set of tuples within which 
all tuples appear i times in all the reads. Among all the sets, there must ex-
ist a set Scoverage in which all tuples have no repeats in the genome. The 
number of these tuples appearing in all the reads will be equal to the cov-
erage of the genome. |Scoverage| is larger than any other |Si|, i ≠ coverage be-
cause in the genome the amount of tuples with multiplicity equal to 1 is 
more than the amount of tuples with multiplicity equal to 2, 3, or more. So, 
we can easily identify the set Scoverage from all sets of tuples. The subscript-
ing value of Scoverage is just the coverage of the genome. 

We compute statistics for four species from TIGR Benchmark (The In-
stitute for Genomic Research, 2003). The result is shown as Figures 8.1 
through 8.4 (the X axis represents the appearing number of tuples and the 
Y axis represents the number of tuples having some appearing number). 
From these figures, we can clearly see that there is a peak in each curve. 
The peak indicates the largest amount of tuples whose appearing number is 
just equal to the coverage of the genome. But there exists an error between 
experimental coverage of the genome and its real coverage, as discussed 
above. This is because some unqualified reads (too long or too short) have 
been removed from the chemical experiments for sequencing (Shamir and 
Tsur, 2002). So, the experimental coverage will be slightly smaller than 
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the real value. When implementing the system, we will augment the ex-
perimental coverage and use it to calculate the multiplicity of each tuple. 

Our next work is to conduct large-scale experiments to demonstrate our 
parallel assembly approach. The experiments will be carried out at the 
Australian Partnership for Advanced Computing National Facility, which 
owns a powerful AlphaServer SC with more than 500 CPUs and 700 GB 
RAM and a Cluster with 600 CPUs and 150 GB RAM. 

Fig. 8.1. Statistics of brucella suis 

Fig. 8.2. Statistics of wolbachia sp 

Fig. 8.3. Statistics of shewanella oneidensis 
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Fig. 8.4. Statistics of staphylococcus epidermis RP62A 

Implementation 

The hash table is the most important data structure used by sequence as-
sembly. The l-tuple to be accessed can be rapidly located by using the hash 
table. The djb2 function, one of the best string hash functions, is used here. 
The hash table is evenly distributed over each computing node. Assuming 
that the size of the hash table is n and the number of computing nodes 
available is p (the computing nodes are numbered 0,1,2,…,p-1), the size of 
partial hash table on each node is ⎡ ⎤pn/ . For some l-tuple generated from 

some read, its hash value h can be calculated by the hash function with the 
string of l-tuple as input. This l-tuple will be assigned to the computing 
node numbered h% ⎡ ⎤pn/ . A linear list is used to deal with the hash con-

flict. The hash table also contains the multiplicity of each l-tuple that de-
termines how many times the l-tuple would appear in the assembly result. 
The repeat and non-repeat l-tuples will be assembled at the same time. The 
parallel assembly will finish when the multiplicities of all the l-tuples are 
decreased to zero. 

8.3 Large-Scale Pairwise Sequence Alignment 

8.3.1 Pairwise Sequence Alignment 

A pairwise sequence alignment is a scheme of writing one sequence on top 
of another, where the residues in one position are deemed to have a com-
mon evolutionary origin. If the same letter occurs in both sequences, then 
this position has been conserved in evolution. If the letters differ, it is as-
sumed that the two derive from an ancestral letter (which could be one of 
the two or neither). Homologous sequences may have different lengths, 
though, which is generally explained through insertions or deletions in se-



8 Biological Sequence Assembly and Alignment 255 

quences. Thus, a letter or a stretch of letters may be paired with dashes in 
the other sequence to signify such an insertion or deletion. In such a simple 
evolutionarily motivated scheme, an alignment mediates the definition of a 
distance for two sequences. One generally assigns 0 to a match, some 
negative number to a mismatch, and a larger negative number to an indel. 
By adding these values along an alignment, one obtains a score for this 
alignment. A distance function for two sequences can be defined by look-
ing for the alignment that yields the minimum score. Luckily, using dy-
namic programming, this minimization can be effected without explicitly 
enumerating all possible alignments of two sequences. 

The idea of assigning a score to an alignment and then minimizing over 
all alignments is at the heart of all biological sequence alignment. How-
ever, many more considerations have influenced the definition of the 
scores and made sequence alignment applicable to a wide range of biologi-
cal settings. First, note that one may either assign a distance or a similarity 
function to an alignment. The difference lies more in the interpretation of 
the values. A distance function will define negative values for mismatches 
or gaps and then aim at minimizing this distance. A similarity function will 
give high values to matches and low values to gaps and then maximize the 
resulting score. The basic structure of the algorithm is the same for both 
cases. In 1981, Smith and Waterman showed that for global alignment, i.e., 
when a score is computed over the entire length of both sequences, the two 
concepts are in fact equivalent. Thus, it is now customary to choose the 
setting that gives more freedom in appropriately modeling the biological 
setting than one is interested in. In the similarity framework, one can easily 
distinguish among the different possible mismatches and also among dif-
ferent kinds of matches. For example, a match between two tryptophanes 
is usually seen to be more important than a match between two alanines. 
For amino acids, scoring matrices have been defined to assign a score to 
each possible pair of amino acids. 

The Smith-Waterman algorithm (Temple and Michael, 1981) is the op-
timal algorithm for pairwise biological sequence alignment; it gives the 
optimal local alignment of two sequences in a mathematical sense. Two 
sequences to be compared are placed on the top and at the left of a similar-
ity matrix SM, and each element of SM is calculated using equation (8.1): 
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The value of one element of SM is determined by the left, left upper and 
upper, elements. gp is the gap penalty for inserting a space into the se-
quence and ss is the value obtained by comparing two letters. It is often 
negative if the two letters are different. gp and ss can be reset by users. 
There will be one or more than one element with the maximum value after 
calculating values of all elements. Tracing back the path of each element it 
follows to get the maximum value, the algorithm gives one or more than 
one optimal local alignment between the two sequences. 

8.3.2 Large Smith-Waterman Pairwise Sequence Alignment 

Algorithm 

The approach to parallelizing the pairwise sequence alignment is to dis-
tribute the computation along the diagonals of the similarity matrix, be-
cause the computation of element values along one diagonal is independ-
ent of that along other. But there is dependency between neighboring 
diagonals because the calculation of one element value relies on the values 
of its left, left upper and upper elements. So the parallel alignment is exe-
cuted in a wavefront way, computing first the values along the first diago-
nal in parallel, then along the second diagonal in parallel, and so forth, 
through the last diagonal in parallel. 

While the parallel calculation goes on, selection for the element with the 
highest score is also conducted, so that only the elements in the last diago-
nal are required to be rememberered. This greatly reduces the memory re-
quirement. 

The computing granularity can be changed to achieve the best perform-
ance according to the size of the similarity matrix and number of comput-
ing nodes available. There will be a trade-off between the granularity and 
load balancing. Larger granularity will reduce the communication over-
head; this will improve the performance but, at the same time, it is more 
likely to incur load imbalance, which will degrade performance. 

Implementation 

Supposing we align sequences X and Y with the lengths m and n, respec-
tively, and partition the similarity matrix into blocks, as shown in Table 
8.1. The number of columns of each block is k, and the number of rows is 
l. Each block will be assigned to a computing node. The blocks on differ-
ent nodes will be calculated in parallel. A computing node needs to get 
k+l+1 elements from left, left upper, and upper blocks when it calculates 
some block, and k+1 elements are needed from another node. By partition-
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ing the matrix into blocks, each computing node will calculate more data 
(a block) after receiving the adjacent elements at one time. So, the granu-
larity is increased and communication frequency is reduced. The values of 
k and l should be set according to the network bandwidth available. But the 
granularity should not be too large or the parallelism would be damaged. 

Table 8.1. The distribution of similarity matrix over computing nodes 

Sequence X 
0 1 2 … ⎡ ⎤km -1 P1 

⎡ ⎤km ⎡ ⎤km  +1 ⎡ ⎤km  +2 … 2 ⎡ ⎤km  -1 P2 

2 ⎡ ⎤km 2 ⎡ ⎤km +1 2 ⎡ ⎤km +2 … 3 ⎡ ⎤km  -1 P3 

… … … … … … 

(t-1) ⎡ ⎤km  (t-1) ⎡ ⎤km +1 (t-1) ⎡ ⎤km +2 … t ⎡ ⎤km -1 Pt

t ⎡ ⎤km  t ⎡ ⎤km +1 t ⎡ ⎤km +2 … (t+1) ⎡ ⎤km -1 P1 

… … … … … … 

S
e
q
u
e
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c
e

Y
( ⎡ ⎤ln -1) ⎡ ⎤km ( ⎡ ⎤ln -1) ⎡ ⎤km +1 ( ⎡ ⎤ln -1) ⎡ ⎤km +2 … ⎡ ⎤ln ⎡ ⎤km -1 P ⎡ ⎤ln % t

8.4 Large-Scale Multiple Sequence Alignment 

8.4.1 Multiple Sequence Alignment  

Multiple sequence alignment is known to be NP-complete. Given a num-
ber of sequences of symbols from an alphabet, the aim is to build an 
alignment matrix that maximizes some function. Gaps may be introduced 
between symbols, and in some multiple sequence alignment formulations, 
the objective function includes a measure of the number and lengths of 
gaps. 

The aim of multiple alignment is to find the sites that are homologous in 
all the sequences. This is a very active area of research and numerous ap-
proaches are being proposed, with varying degrees of performance depend-
ing on the nature of the sequences aligned. Most of the methods are based 
on a concept called progressive alignment. The methods work by con-
structing successive pairwise alignments; initially, two sequences are se-
lected and aligned by pairwise methods, and the alignment is fixed. Then, 
a third sequence is selected and aligned with the first alignment, and this 
procedure is repeated until all sequences are aligned. Most methods use a 
“guide tree” to determine the order in which to add sequences. 
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Clustal W (Julie et al., 1994) is one of the most widely used multiple se-
quence alignment programs. This does not mean that it is ideal for all 
situations; it performs well with protein and protein-coding DNA se-
quences but is less suited to sequences like rRNA sequences. 
The algorithm proceeds as follows: 

1. Construct a distance matrix of all the n(n-1) sequence pairs 
2. Construct a guide tree by the neighbor-joining method based on the dis-

tances from the previous step 
3. Progressively align sequences at the nodes in order of decreasing simi-

larity, using sequence-sequence, sequence-alignment, and alignment-
alignment alignments 

There are three main parameters that can (and should) be varied when 
using Clustal W; the substitution cost matrix, the gap opening cost, and the 
gap extension cost. It is also possible to provide a user guide tree, skipping 
directly to step three in the procedure. 

8.4.2 Large-Scale Clustal W Multiple Sequence Alignment  

Algorithm 

The parallelization of Clustal W is conducted in all its three stages. For the 
first stage, we will have two levels of parallelization. The first level of par-
allelization lies in the calculation conducted on the whole n(n-1) pairs of 
sequences. Because the calculation on different sequence pair is com-
pletely independent, we get a very high degree of parallelism. The second 
level of parallelization lies in the pairwise sequence alignment. For achiev-
ing load balancing across all the computing nodes, we will partition all the 
computing nodes into groups with similar computing capacities. In the first 
level of parallelization, all sequence pairs will be distributed into the com-
puting groups according to each pair’s computing load, which can be esti-
mated in terms of the length of each sequence in the pair. The second level 
of parallelization will be achieved in each group, i.e., parallel pairwise se-
quence alignment for each pair, conducted in the group the pair of se-
quences belongs to. 

For the second stage, the calculation of the minimal value of each row in 
the distance matrix can be parallelized. Then, the minimal value of the ma-
trix can be calculated according to each computing node’s result. Finally, 
for the third stage, we exploit the parallelism that exists in the iterative 
loops. 
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Implementation 

Different computing granularities can be adopted at different stages of the 
Clustal W algorithm in its implementation in a distributed computing envi-
ronment. All sequence alignments conducted in the first stage of Clustal W 
are independent. They can be theirfore parallelized with smaller granular-
ity so as to achieve maximal parallelism. But, for the second and third 
stages, the granularity should be bigger because there are more dependen-
cies among the computing nodes. Smaller granularity will bring about 
greater communication overhead, which will offset the benefit gained from 
parallelism. 

8.5 Load Balancing and Communication Overhead 

Load balancing is a big problem for parallel computing. Load on the com-
puting nodes with limited computing power will make other processes 
wait; thus, resources are wasted and performance is degraded. Since the 
communication overhead is relatively high in distributed systems, the in-
teraction frequency between computing nodes should be as low as possi-
ble. 

As for parallel sequence assembly and alignment, load distribution algo-
rithms developed before can still be used to improve their performance. 
But they should be modified so as to be as effective as possible for load 
balancing in parallel biological computing. Factors this should be consid-
ered by these algorithms are communication overhead, and heterogeneity. 

The interaction among computing nodes in a parallel sequence assembly 
algorithm is not trivial. Computing nodes have to request the l-tuples from 
other nodes. If one request is sent per l-tuple, there will be too many com-
munication requests that will bring about a large amount of overhead, in-
curred mainly by the communication startup. So, these single requests 
should have to be incorporated to a request set that will be sent once. A 
similar situation occurs in sequence alignment, and a similar approach can 
be applied. 

8.6 Conclusion 

It is a worthwhile exercise to conduct large-scale biological sequence as-
sembly and alignment by parallel computing to take advantage of its vast 
storage and computing capability. This chapter gives strategies for paral-
lelization of the Euler sequence assembly, pairwise sequence assembly, 
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and multiple sequence assembly and their implementation. Effective task 
scheduling and good computing granularity will boost the performance of 
biological applications running on a distributed computing environment. 
Good preliminary experimental results have been achieved when conduct-
ing parallel sequence assembly and alignment on clusters. However we 
should do more to take advantage of parallel computing. The load balanc-
ing discussed in this chapter is static, i.e., load distribution takes place at 
the beginning of calculation. In future work, we will investigate dynamic 
load balancing to adjust the load assigned to the computing nodes dynami-
cally to be adaptable to the fluctuation of the distributed computing envi-
ronment. 
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9.1 Introduction 

A model represents something that may be either an abstract or a concrete 
entity. Modeling is the process of creating a model. In science, it is nor-
mally carried out using a mathematical representation. Modeling in bioin-
formatics means any representation that simulates a biological process. 
This chapter deals with the important modeling approaches used in bioin-
formatics, namely, 1) Hidden Markov Model (HMM), 2) comparative 
modeling, 3) probabilistic modeling, and 4) molecular modeling. 

Hidden Markov Model (HMM) gained ground in bioinformatics after 
having been applied to speech recognition. HMM will be elaborately dis-
cussed in this chapter. Comparative modeling is based on the characteristic 
conservation at the gene product and genomic levels. Comparative protein 
and comparative genomic modeling will be subsequently presented. The 
important probabilistic modeling approaches, namely, Bayesian networks 
and Stochastic Context-Free Grammars (SCFGs) will also be discussed. 
Finally, the molecular modeling techniques such as visualization of simple 
3D molecules and analysis and simulation of large complex protein mole-
cules will be discussed. 
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9.2 Hidden Markov Modeling for Biological Data Analysis 

The Hidden Markov Model (HMM) is a dynamic statistical profile built 
from the analysis of a “training” dataset. Its major focus is on states and 
their transitions, and it can be visualized as a finite state machine. Prob-
abilities are then assigned to each state (emissions) and between states 
(transitions). The term “hidden” arises from the fact that the state of the 
model at any time is a function of the input string. 

Three primary roles of Hidden Markov Modeling in biological sequence 
analysis are discussed. They are: 

• Sequence Identification 
• Sequence Classification (PHMM), and 
• Generation of Multiple Alignments (PHMM) 

9.2.1 Hidden Markov Modeling for Sequence Identification 

The applicability of the HMM to sequence identification arises from its 
ability to distinguish target sequences from the background of biological 
data. The goal of the Hidden Markov Model is to differentiate sequences 
that match the consensus from those that do not match. Figure 9.1 demon-
strates this process clearly in a very simplified form. 

Fig. 9.1. Simplified Hidden Markov Model 
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In order to show the discrimination ability of such a model, two se-
quences are scored, “acaaat” which matches the consensus and “ttcttg”, 
which deviates significantly from the consensus. The emission probabili-
ties are multiplied with transition probabilities to form the score for the se-
quence, as can be seen below. The determination of the emission and tran-
sition probabilities is derived from alignments of target sequences 
comprising the training dataset. 

1-101.39

0.90.6.850.6110.8510.710.85P(acaaat)

∗≈
∗∗∗∗∗∗∗∗∗∗=

(9.1)

7-105.76

0.10.60.040.6110.110.110.04

∗=
∗∗∗∗∗∗∗∗∗∗=P(ttcttg)

(9.2)

The sequence that matches the consensus has a score 241,319 times 
greater than the sequence that deviates from the consensus. The ability to 
distinguish target sequences against non-targets is the primary role of the 
HMM. 

Having a model that scores target regions against random nucleotide se-
quences would be a further improvement for more accurate discrimination. 
By scoring against a random sequence, the scores can be given a meaning 
in relation to a random sequence of nucleotides. For each nucleotide (A, C, 
G, and T) there is a 25% likelihood of the particular base being present at 
any given location. Thus, a target sequence of length n would have a prob-
ability of 0.25n random nucleotides. 

To score a sequence against this null model, a generic logarithmic func-
tion called “log-odds” can be applied to the frequency data in the probabil-
ity matrix (Krogh, 1998). This matrix data is derived from the analysis of a 
training dataset. This function is essentially a ratio where the log function 
is applied to achieve computational efficiency as well as an additive scor-
ing scheme. Another benefit of using the logarithm function is to avoid 
underflow issues arising from the computation of very small probabilities. 

25.0
lnScorePositional

weighting=  (9.3)

With a scoring scheme implemented, attention can be devoted to model 
development. 

The form, length, and location of the target sequence will define the 
structure of the HMM used for its identification. As Hidden Markov Mod-
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eling is a generic approach to sequences identification, detailed study of 
the target sequence must be performed before model development. 

Two forms of target sequence become apparent, namely,1) regional 
identification and 2) specific short sequence identification. The former tar-
get category is concerned with the location of relatively large regions of 
genetic code; an example is the gene promoter region. The latter target 
category forms a small subsequence; an example is a basal promoter ele-
ment within a gene sequence or a restriction enzyme site. These two forms 
of targets dictate the structure and complexity of the HMM. 

The identification of regional targets in genomic sequences involves the 
construction of a trained model via sequence alignment of known target 
regions. Identification procedures are based on distinguishing trained tar-
gets against non target sequences. The Hidden Markov Model would con-
tain three categories of states, namely, main, insert, and delete, that depend 
on the target sequence composition. 

The main state represents non-gapped regions of the sequences; the in-
sert state represents regions not conferring with the consensus sequence; 
and the delete state represent no emissions. Diagrammatic representation 
of these three states can be seen in Fig. 9.2. 

The identification of short sequences presents a significant challenge; a 
series of generic steps is described for the construction and implementation 
of this approach. 

Once a target has been decided upon and a draft model developed, emis-
sion and transition probabilities can be assigned via observations obtained 
from an appropriately large training dataset. To aid understanding, the 
basal promoter element called the TATA Box will be used for demonstra-
tion purposes. 

A critical step is the detailed understanding of the target sequence of the 
TATA Box before any model development can begin. Intense research has 
led to the realization that this sequence has a consensus sequence of 
TATAAAA and exists with lengths of 5, 6, 7, and 8 nucleotides. The ini-
tial model can be seen in Fig. 9.2, prior to allowing length variability. 

Fig. 9.2. Initial HMM with Probabilities Assigned 

It can also be seen that the initial model is linear in form, with no 
branches, and with the transition probabilities set to 1, indicating a com-
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plete non-branching traversal. To alter this model for length variability, 
premature terminations were included, as shown in Fig. 9.3. 

Fig. 9.3. Length Independent HMM 

The inclusion of premature termination paths allows modeling of length 
variability. This is a generic process for any short target that varies in 
length. Once a model has been developed, probabilities are assigned via 
analysis of a training dataset. Data comprising the training set can be 
sourced from various locations. The NCBI Nucleotide database was que-
ried for our case study with the search string “TATA_signal ‘Homo 
Sapiens’”. The results returned were human gene sequences containing the 
TATA Box annotation. By selecting the TATA_signal link on the Gen-
Bank page, sequence composition could be discovered together with its 
position in the parent gene sequence. It is imperative that the training data-
set be sufficiently large and represent true observations, and not be biased 
by the database search method. In general, the more representative the 
training dataset, the more effective the HMM will become. 

By further investigating the properties of the target sequence, trends im-
pacting the scoring scheme can be identified, as can be seen Fig. 9.4. The 
first five bases show a close match to the consensus, as does the sixth base; 
however, variation from consensus is clearly apparent beginning with the 
seventh base. Given the length variability beginning with the fifth base and 
sequence composition variability beginning with the seventh base, it was 
theorized that these regions would score poorly, perhaps masking the cor-
rect target sequence. 

To negate the effects of scoring the latter portion of the TATA Box se-
quence poorly, reducing the sequences’ overall score, the “Cumula-
tive/Single Calculation” algorithm was applied. 

Assigning the most highly conserved region’s scoring significance to 
the region of highest variability would have masked the correct target site; 
the solution was to score these two regions differently. 
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Fig. 9.4. Training Sequence TATA Box Consensus Match 

Greater scoring significance is given to the first five bases, which score 
highly if correct. Less importance is attributed to the last three bases, as the 
variability incurred in scoring these regions may mask potentially correct 
scores from the first five bases. To score these regions appropriately, cu-
mulative scoring can be applied to the first five bases. Variability within 
this region greatly impacts the cumulative score, which is a desirable at-
tribute given that this region matches the consensus closely and variation is 
unwanted. 

For the last three bases, which represent considerable variability, the 
single highest state score is used to represent the score for this region. This 
allows for the observed variation, but without penalizing the scores of the 
prior five bases. 

The scores for the most conserved region are added together with the 
highest score from the remaining three bases to equal the final score for the 
potential TATA Box sequence. 

This generic scoring optimization can be applied to any target sequence 
where deviation from the consensus occurs at a distinct level within the 
sequence, as seen in Fig. 9.4. Implemented as a computational scheme, the 
appropriate algorithm is outlined as follows 
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START: 
 While not at end of file 

For each base 
Get substring of 8 bases 

Calculate 5 base cumulative score 
Calculate highest score of last 3 bases  
Add the two scores together 

Return the highest scoring sequence 
END. 

To effectively model deviation from the consensus occurring in the most 
highly conserved region, an optimization called consensus blurring can be 
applied to the scoring scheme. To implement this scheme, the score of the 
most highly conserved base position has its weighted score inverted. A 
consensus match grater than 95% at the nucleotide position is considered 
acceptable for consensus blurring. The effect of inverting the score of the 
most conserved base allows for target sequences varying in this position to 
score higher. Inverting or lowering the score of other bases would not nec-
essarily lead to an improvement in correct target identification. Except the 
highest consensus matching base, others should not have their scores 
modified, as the variability from the consensus would be too wide, result-
ing in a high degree of false positive identification. 

The steps involved in the short sequence identification method can be 
summarized as follows: 

1. Gain a clear understanding of the target for identification 
• Length 
• Composition 
• Location 
• Deviation trends  

2. Use the most representative dataset available 
3. Model Length Variability, if applicable 
4. Implement “Cumulative-Single” Scoring, if applicable 
5. Implement consensus blurring, if applicable 

In addition to these scoring optimizations, the co-location algorithm can 
be applied if the target sequence is located in known proximity to another 
highly conserved sequence. The goal of this algorithm is to reduce the 
number of false positive results by placing the scores into a positional con-
text. This approach uses n HMMs developed for each marker sequence. 
When the sequences are scored, the highest scores are compared to a posi-
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tional consensus framework to identify the correct target. Graphically 
these optimizations are presented in a flow diagram, as seen Fig. 9.5. 

Fig. 9.5. Flow Chart for Short Target Sequence Model Development 
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When applying Hidden Markov Models to nucleic acid sequence identi-
fication, limitations are prominent. 

The biological data under analysis is limited to a very small alphabet 
{A,C,T,G}. The greater yhe number of possible paths, the more accurate 
recognition of target matching sequences will become. Given only four 
bases per state, there is a 25% likelihood of a random occurrence matching 
the consensus base. As a consequence, a consensus base per state has a 
comparable background likelihood of 25% at each state. This value repre-
sents a very high background to distinguish a consensus score. 

When applied to protein analysis, the alphabet is expanded by default to 
20, accounting for each amino acid. This increase in the size of the alpha-
bet significantly lowers the random likelihood of a unit matching the target 
at each state of the HMM. 

The larger the alphabet, the lower the likelihood of random occurrences 
matching the consensus sequence under analysis. This is especially perti-
nent for sequences of considerable length. Protein analysis, having a five 
fold larger alphabet than nucleic acid, is better suited to HMM processing 
in this form. 

To highlight these limitations using the case study, the TATA Box con-
sensus sequence of length seven bases was chosen. When compared to the 
number of bases within the genes under analysis, the seven base TATA 
Box sequence has a 1/47 = 1/16384 base probability of occurring; con-
sidering the typical length of human genes, the likelihood of encountering 
more than one matching sequence is quite high. This assumption is based 
on a GC content of 50%. Much work has centred around using HMMs for 
modeling large sequences of proteins. As an analogous example, a small 
polypeptide chain of seven amino acids has a 1/20 = 1/1.28x109 amino 
acid likelihood; the occurrence magnitude is significantly smaller than the 
seven base DNA sequence analysis. 

In summary, the greater the target length and the larger the alphabet, the 
less likely that the target sequence will occur in the data under analysis. 

As mentioned earlier, regional identification solves one of these limita-
tions, namely, overcoming the short target sequence. With target regions in 
tens to hundreds of nucleotides in length, the chance of locating more than 
one target in the parent sequence is diminished significantly. 

The effectiveness of short sequence identification is constrained by 
these two limitations; however, regional identification is less affected by 
short target lengths. 

The approaches presented up to this point provide a platform for future 
improvement of current HMM identification techniques. The combination 
of regional analysis and short sequence “local” analysis would generate a 
multiple layer HMM process. Initially, a large model developed for re-
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gional identification would be enacted on the data. Once candidate regions 
have been identified, a second layer of processing would be executed, 
leading to the location of conserved markers in a positional framework us-
ing co-ocation, as discussed earlier. This second level of processing would 
add a higher degree of accuracy to the regional location. 

This scheme mutually benefits both the regional and the local model. 
Improvements in accuracy to both models can be achieved, as can be seen 
Fig. 9.6. 

Fig. 9.6. Hierarchical Framework for Identification (not to scale) 

Fig. 9.6, shows the relationship among three levels of identification. The 
top HMM is concerned with gene identification within genomic data, act-
ing as a local model. A HMM promoter identification itself has a local 
model for promoter element identification. This scheme begins with a 
search domain encompassing the genome of the organism. At each succes-
sive stage, this search domain decreases as more locally significant smaller 
target sequences are located. The dotted box in Fig. 9.6 represents the end 
target for analysis. As discussed previously, the limitation of the short tar-
get sequence is diminished at each stage with the decrease in the search 
domain. The likelihood of more than one consensus matching target is 
therefore low. In this manner, the regional model is made more accurate by 
its associated dependent local HMM sub-models. The local models are 
also benefited by the identification using the shortened search domain. 

A comparison of HMM techniques is presented in table 9.1. 
The key outcomes presented in Table 9.1 highlight the benefits of using 

the combinational framework. First, the combined model has the ability to 
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identify targets independent of length. The allowance for regional and lo-
cal identification can resolve sequences of both length categories. The 
combined model is least affected by the limitations imposed by HMMs on 
nucleic acid sequence identification. The short target length limitation is 
overcome by the narrowed search domain, and the alphabet limitation is 
lessened by the accuracy obtained via this multilayered approach to im-
prove identification. Flexibility is most apparent in the regional model, as 
the opportunity to model variation from the consensus of a large sequence 
length is available. The combined model incorporates both the regional 
and the local model; as such, there is a balance between the flexibility of 
the regional model and the rigidity of the local model. The predicted out-
comes of these techniques results in a combined model that offers greater 
accuracy through multiple layers of identification and verification. 

Table 9.1. HMM Form Analysis 

Criteria / HMM Form Local Regional Combined 
Length of Target Small 5-20 

bases 
Large 20-200 
bases 

Any length 

Limitations Alphabet, short 
target length 

Alphabet Low 

Flexibility of Consensus None Some Little 
Predicted Accuracy Domain Range 

Dependent else 
Low 

Average Good 

HMMs represent a viable approach to sequence identification with the 
applicability to both nucleic acid and amino acid analysis. Presented in this 
chapter is the application of HMMs to sequence identification, primarily 
focusing on nucleic acid sequences; however, this is a generic approach 
applicable to many nucleic acid search routines and has good correlations 
to protein analysis. The approaches presented here represents a foundation 
for further development of Hidden Markov Modeling for sequence identi-
fication. 

9.2.2 Hidden Markov Modeling for Sequence Classification 

Sequence classification is generally concerned with the identification of 
protein domains. Specifically, these domains are classified as conserved 
structures, or behaving as discrete functional units. 

In order to model family identification, Profile Hidden Markov Models 
(PHMMs) are introduced. A generalized structure of the PHMM that 
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shows the main components is presented in Fig. 9.7. PHMMs follow the 
conventions of HMMs with the term “Profile” being attributed to its 
trained structure representing a profile of the target under analysis. 

Fig. 9.7. Sample HMM Profile 

Figure 9.7 demonstrates the main features of the HMM profile. The 
PHMM is derived from multiple alignment. The details of an appropriate 
multiple alignment portion of Fig. 9.7 are provided in Table 9.2 with three 
consensus columns.  

Each node in Fig. 9.7 corresponds to a column in Table 9.2. It has a 
main state (box), an insert state (diamond), and a delete state (circle). The 
main states (boxes) represent data appearing in the columns in Table 9.2. 
The delete states (circles) represent non-existing (silent residue) data 
alignment gaps. The insert states (diamonds) represent additional data al-
lowing sequences to include data between the columns of Table 9.2. The 
circular arrow to the insert state indicates that more than one such insertion 
of data is permissible. 

Table 9.2. Amino Acid Data to Construct PHMM 

Sequence Position 
1 2 3 
D W W 
D W W 
E W W 
G W T 
D W W 
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Practical applications of this approach are realized while modeling a 
domain. Figure 9.8 shows the details of the SH3 domain in the extracted 
data (Krogh, 1998). 

Fig. 9.8. SH3 Domain Amino Acid Alignment 

In Fig. 9.8, the shaded regions represent the most conserved portions of 
the sequence, with the white lower case regions showing the most variabil-
ity. When constructing a PHMM to suit this data, the main states are 
shown with a shade and the insert states are shown in the white back-
ground. The PHMM model constructed (Krogh, 1998) using the SAM 
software package (UCSC February 2004) is shown in Fig. 9.9. 

The PHHM in Fig. 9.9, can be interpreted as bold nondirectional lines 
indicating horizontal traversal, with directional lines indicating traversal to 
the insert state (after the sixth state). Dashed lines indicate a traversal of 
low probability to the delete state. Main states are represented as rectan-
gles, and correspond to the shaded regions of Fig. 9.8. Insert states are 
diamond shaped, with circular delete states showing the state number an-
notation. 
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Fig. 9.9. PHMM of SH3 Domain Data (Krogh, 1998) 

Further observation of Fig. 9.9 reflects the properties of the SH3 domain 
data. The dashed lines represent transitions to the delete state. The first one 
arises from the eighth sequence not having a matching amino acid, leading 
to the transition from the “begin” to the first delete state. As the eighth se-
quence conforms to the consensus at the second state, a bold line is drawn 
to indicate a traversal back to the main state. Since only the eighth se-
quence shows this trend there is a 1/30 probability assigned to this transi-
tion. The other delete state transition occurs when the fourth sequence at 
state 13 begins two states of non-matching amino acids. Since this transi-
tion to the delete state occurs only once, a 1/30 probability is assigned. 
This sequence also defines the horizontal bold alternative traversals be-
tween the 13th and 14th delete states, and 14th delete state and the end 
state. Other features of note include the directional bold line arising from 
the sixth state and leading to the insert state; this location indicates the 
transition from the main state (shaded in Fig. 9.8) to the variable insert 
state (white in Fig. 9.8). The number “85” located in the diamond indicates 
the probability in percentage terms of self insert transitions occurring in 
the insert region of the sequence. 

As mentioned previously, the largest and most representative training 
dataset will benefit the effectiveness of the HMM. Related to this state-
ment is the issue of over-fitting, whereby the model is trained with little 
evidential training data, resulting in diminished value of the result. Overfit-
ting is an issue when model parameter data is obtained from a limited data-
set. Datasets containing amino acids of a narrow range will mask the rec-
ognition of valid sequences containing variations from those in the training 
set. An example would be a state containing amino acids that have emis-
sion probabilities G, S and L. If a candidate sequence was scored, and con-
tained an amino acid that differed from G, S, L, there would be an occur-
rence probability of 0. This problem, defined as over-fitting, makes the 
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trained model inflexible with regard to data differing from the training 
dataset. 

To partially solve this issue, techniques classified as regularization 
(Karchin, 1999) have been developed. One such technique, called pseu-
docounting, involves inserting false occurrences into the training dataset. 
These counts are added to amino acids regardless of occurrence in the col-
umns of the training dataset. Given that there exist 20 distinct amino acids 
along with the existing amino acids in the columnar data for the state in the 
model, there will exist (20x + n) counts, where n is defined as the number 
of rows (number of sequences) in the training dataset and x represents the 
pseudocount number. For a training dataset of five sequences with pseu-
docount 1, there will exist 20 x 1 + 5 = 25 amino acids for the column. The 
inclusion of pseudocounts affords the model greater flexibility when en-
countering valid candidate sequences deviating from the training dataset. 
The act of adding a count to all amino acids assumes that each amino acid 
is equally likely to be present in that state. This assumption does not hold 
true for many sequences, and an appropriate solution would be to adjust 
the counts relative to the observed amino acids in the sequences. 

A more complicated and representative method, called Dirichlet mix-
tures (Sjolander et al., 1996), relies upon statistical analysis of the amino 
acid positional distributions within a dataset of protein sequences. The 
Dirichlet density forms the basis of the Dirichlet mixtures, and is defined 
as the probability density of the entire set of possible amino acid combina-
tions at a specified position. The assignment of differential probabilities to 
characteristic distributions enables a distinction to be made. Differential 
probabilities can be assigned to amino acids that present a common identi-
fying feature, namely, hydrophobic behavior (Karchin, 1999). The impor-
tance of such approaches embeds detailed protein structural data into the 
parameter elicitation process of constructing the HMM. Once identified, 
Dirichlet densities are combined with the observed values to equal the 
pseudocount for the amino acid. 

The profile applicability of Hidden Markov Models is suited to many 
situations and is primarily involved with classification of protein se-
quences into an encompassing family. The word “profile” applies to the 
structure of the model, which acts as an identification mechanism captur-
ing the key features of the family under analysis. The profile contains spe-
cific information relating to sequence composition, insert and delete re-
gions, regions of conservation, and the categorization of residues 
associated with their positions. This has been highlighted in Fig. 9.9, 
which shows a profile for the SH3 Domain. Practical examples of Hidden 
Markov Modeling for family recognition can be found in the literature 
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(Baldi et al., 1994) for the identification of the globin, immunoglobulins, 
and kinase family members. 

The essential elements that form the basis of PHMM generation for the 
identification of protein family members are discussed in this chapter. In 
nutshell, this process involves the model development for sequence identi-
fication, where parameters are obtained from alignments that constitute the 
training dataset. Issues concerning overfitting have been discussed in view 
of possible solutions. The major steps used in PHMM generation are 
summarized below: 

1. Gain a clear understanding of the target domain for identification 
• Length 
• Composition 
• Location 
• Deviation trends 

2. Use the most representative dataset available 
3. Model the variability insert regions and consensus regions as main states 
4. Use pseudocounts if necessary 
5. Apply Dirichlet techniques for more complex sequences 

The resultant PHMM that evolved out of these steps will serve as the 
basis for classification of sequences based on the trained model. Using this 
framework, the assignment of candidate sequences to protein families may 
give contextual insights into their functions. 

9.2.3 Hidden Markov Modeling for Multiple Alignment 
Generation 

The generation of multiple alignments is a task of great significance, with 
correlations to homology studies. The alignment process maybe applied to 
gather sequences of similar structure and function. Using HMMs for this 
purpose represents a significant improvement over traditional human 
meditated approaches.  

In order to implement multiple alignment using profile HMMs, many 
algorithms are to be considered; however, the Viterbi algorithm is princi-
pally chosen to align candidate sequences to the pre-constructed model. 
The Viterbi algorithm is well suited to this task, as an optimal path is 
found using efficient recursive techniques. 

The Viterbi algorithm is best described through an example, as shown in 
Fig. 9.10. 



9 Modeling for Bioinformatics 279 

Fig. 9.10. PHMM with multiple paths for EGGR 

Given a candidate sequence of EGGR, there exists more than one path 
through the model. To resolve the most likely path through the model, the 
Viterbi algorithm is applied; its component matrix is shown in Table 9.3. 
The columns represent states from the model and the rows represent the 
candidate sequences’ amino acids. 

Table 9.3. Viterbi Matrix Probability Data 

 I0 I1 M1 I2 M2 I3 M3

E 0.12       

G  0.003 0.08     

G     0.16   

R      0.021 0.32 

The steps invoved in Viterbi Algorithm used is given below: 

1. P(EI0) = (Starttrans x EI0emiss) as the first element  
2. P(GI1) = ((I0 → D0)trans x (D0 → I1)trans x (GI1emiss)) & P(GM1) = ((I0→

M1)trans x (GM1emiss))
3. PMAX(I1,M1) back pointer set to I0

4. Repeat (2)-(3) substituting amino acids until matrix complete 

The resultant most probable path is shown in Fig. 9.11 in bold. 
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Fig. 9.11. PHMM with the most probable path indicated 

When the back trace has been completed, the sequence aligns effec-
tively with the PHMM. Consequently, the multiplication of probability 
data results in a score for the sequence. The magnitude of this score deter-
mines the status of the sequence being included in a multiple alignment. 

The key steps in this process are listed below: 

1. Develop a trained model by studying preformed multiple alignments 
consisting of the training dataset. 

2. Use dynamic programming techniques to score candidate sequences us-
ing the Viterbi algorithm. 

3. Include the candidate as part of the multiple alignment generated de-
pending of the score from the Viterbi output. 

9.2.4 Conclusion 

The HMM represents a framework for identification and classification of 
biological data. There exist several limitations to HMMs besides the lim-
ited alphabet and short target sequences discussed earlier. Statistically, the 
multiplicative product of the sequence probability states defines the score 
for the sequence where the composition of each state acts independently of 
the others’. This assumption of independence is not necessarily true. For 
example, the amino acids of similar properties are clustered together, and 
hydrophobic regions highlight this problem. Identification of biologically 
significant chain interactions within the polypeptide chain cannot be car-
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ried out with models in this form, As a result, internal interactions repre-
senting hydrogen bonding or disulphide bridging cannot be predicted. 

This section has highlighted three applications of HMMs for biological 
sequence data analysis. The HMM represents a valuable tool for sequence 
identification at multiple levels of length and complexity. The modeling of 
a target family represents a generic profile allowing for the classification 
of candidate sequences. Multiple alignment generation is considered to be 
highly time consuming but can be executed efficiently using the PHMM. 
These topics have been discussed at the introductory level, and insights 
into their operation and applicability serve as a basis for their use and fu-
ture development. 

9.3 Comparative Modeling 

Comparative modeling is a computational technique associated with char-
acteristic conservation at the gene product and genomic levels. Major ap-
plications include the discovery of structural/functional characteristics of a 
polypeptide product and cross-genome organizational studies. The ration-
ale behind such studies relates the gap between known protein sequences 
(750,000) and known structures (17,000) (Westhead, 2004). With struc-
tural knowledge, functional insights can be gained. Additionally, develop-
ment of drugs via structural design can be achieved. Not only can protein 
structures be predicted, but evolutionary trends can also be identified; this 
specifically applies to divergent evolutionary studies, and is achieved by 
comparing the novel sequence with sequences of known “template” or 
structural/functional characteristics and inferring such characteristics. In 
the case of the genome, the principle of comparison is still used on a much 
larger scale. 

In this chapter, techniques used in comparative modeling of protein 
products and comparative genomics will be discussed at a high level. 

9.3.1 Protein Comparative Modeling 

A major prediction task that arises from the application of comparative 
modeling to protein analysis is the elucidation of structural and functional 
characteristics. Differential complexities in characteristic identification 
may indicate that structural features are easier to identify from functional 
characteristics (Westhead, 2004). It is suggested that protein structure is 
relatively conserved, irrespective of the functional changes. e.g., altered 
enzyme specificity or major changes from enzyme to structural protein. 
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The steps to be followed to create an experimental framework for protein 
comparative modeling are presented below: 

1. Begin with a novel “target” sequence. 
2. Collate “template” sequences of a similar known structure with the tar-

get. 
3. Perform multiple alignments of the template sequences with the target. 
4. Make predictions of structurally conserved regions and insert/delete re-

gions. 
5. Create a model of the predicted region(s) in step 4 that accounts for in-

sert/delete modifications. 
6. Add side chains to the model in step 5. 
7. Evaluate and refine the model. 

The target novel sequence forms the basis of the comparative process. 
However, the goal is to discover properties of this sequence by comparison 
with known “template” sequences. The collation of template sequences is 
based on sequence comparison methods, including the Position-Specific 
Iterated (PSI)-BLAST method, or via sequence-structure threading meth-
ods that utilise fold assignment and alignment, as stated by Baker and Sali 
(2001). 

A simple method for collation is also available (Conteras-Moreira and 
Bates, 2002). It includes similarity searching against a database of protein 
structures such as the PDB (Berman et. al., 2000) using a nonredundant 
sequence database adjunct to the PDB (Bates and Sternberg, 1999). To im-
prove sequence collation via the PSI-BLAST method, Conteras-Moreira 
and Bates have developed an approach called Domain Fishing to remove 
false templates and return higher quality template sequences. 

Once a set of templates has been created, multiple alignment can be 
conducted through the use of online tools. Model development follows the 
multiple alignment task and is required to understand the three-
dimensional structure of protein that confers biological functions. Model-
ing can be used in protein engineering for the design of proteins for thera-
peutic applications (Kemp, 2004). Construction of the model is based on 
the protein core, loops, and side chains. This is one of the methods used in 
construction. Another method is based on calculation of atom coordinates 
from approximately conserved template atoms (Levitt, 1992). A third 
method is based on the distance geometry optimizations that seek to satisfy 
the spatial restraints of the sequence-template alignment (Havel and Snow, 
1991; Sali and Blundell, 1993; and Kolinski et al., 2001). After the model 
is created, further necessary refinements can be made by including bond 
geometry using energy minimization techniques. 
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Fig. 9.12. Protein Model Accuracy and Application (Baker 2001) 

The accuracy of the resultant model is dependent on a number of fac-
tors. The sequences can be grouped into categories based on model errors 
and a category defines the application of the model (Baker and Sali, 2001), 
as shown in Fig. 9.12. High accuracy models are regarded as those with 
the target sequence having greater than 50% identity with the template se-
quences. Models in this category have 1Å root mean square (RMS) error 
for the main chain atoms. Errors are primarily attributed to incorrect side 
chain packing and shifts/distortions of the main chain atoms and loops. 
Medium accuracy models represent 30% to 50% of sequence identity and 
have 90% of the main chain atoms with 1.5Å RMS error. Alignment faults 
also contribute to the errors. Low accuracy models are defined by the se-
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quence having less than 30% identity; alignment errors that arise from 
poor template selection are the main contributors toward the overall error. 
Therefore, the appropriateness of the templates and the accuracy of the 
alignment processes are essential for generating an accurate model. 

Accuracy ranges achievable through comparative modeling and associ-
ated applications are shown in Fig. 9.12. Regions A, B, and C in the figure 
represent, approximately, A (60%), B (40%), and C (30%) sequence iden-
tities. Protein modeling techniques are included in this diagram for the 
purpose of comparison. 

Evolutionary studies on protein structure and function apply to studies 
of divergent evolution. Divergent evolution proposes the speciation (sexual 
incompatibility) event, where geographic isolation or environment factors 
contribute to a new species genetically distinct from its originators. Ge-
netic similarities will exist between the new species and its ancestors. The 
discovery of these similarities can be made through comparative protein 
modeling. However, in the underlying structural similarity, subtle changes 
may exist; this may confer different functionality on the resultant gene 
product owing to its distinction from its ancestors. 

Comparative protein modeling is a successful technique and it offers a 
wide variety of applications in the field of protein structure and functional-
ity. It also addresses requirements of the scientific community when ex-
perimental verification is not possible. 

Useful Web-based tools that have incorporated comparative modeling 
are listed in Table 9.4. 

Table 9.4. Comparative Modeling Servers 

Name Location 
CPHmodels http://www.cbs.dtu.dk/services/CPHmodels/ 
3D-JIGSAW http://www.bmm.icnet.uk/servers/3djigsaw/ 
SWISS-MODEL http://www.expasy.ch/swissmod/ 

9.3.2 Comparative Genomic Modeling 

Comparative genomic studies center on discovering functionally and evo-
lutionarily significant information by comparing genomes. The identifica-
tion of cross-genome protein fmilies may lead to targeting drugs better 
when the targets appearing in bacterial genomes do not correlate with the 
human genome, leading to antibiotic targets. Gene classification can be 
further enhanced with the availability of evolutionary groupings. This en-
ables tracing structure/functionality back to a single ancestral gene; there-
fore, classification of the target gene is derived from its ancestral form. 
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Comparative genomics can be conducted at two levels, namely, 1) the 
DNA sequence level and 2) the protein level. At the DNA sequence level, 
it is done by comparing intergenic regions, whereas at the protein level it is 
done by comparing the coding sequences. 

The main feature of comparative genomics is the alignment of genomes. 
This process maps nucleotides from one genome to another genome, and 
includes gaps to allow a greater degree of alignment. Precompiled align-
ments are listed in Table 9.5. These resources allow the researcher to per-
form comparative studies without the computational power involved in the 
alignment of two entire genomes. 

Table 9.5. Precompiled Genome Alignments 

Server / Browser Included Genomes URL 
VISTA Genome 
Browser 

human, mouse, rat http://pipeline.lbl.gov 

UCSC Genome 
Browser 

mammals, worms http://genome.ucsc.edu 

EnteriX & GALA enteric bacteria/human, 
mouse, rat 

http://bio.cse.psu.edu 

Ensembl worms, fish, insects, 
mammals 

http://www.ensembl.org 

Alignment algorithms include the recursive hierarchical alignment of 
genomes at extended match locations used in the GLASS method (Bat-
zoglou et al., 2000) and the decomposition of the genome into small over-
lapping segments for alignment used in the Wobble Aware Bulk Aligner 
(WABA) method (Kent and Zahler, 2000). 

When studying coding regions specifically, understanding the terms 
ortholog and paralog is very important. As defined by Tatusov et al. 
(1997), orthologs are genes in different species that have evolved from a 
common ancestral gene via speciation. Paralogs are defined as genes re-
lated by duplication within the genome. Orthologs differ from paralogs in 
that the functionality of orthologs is partially retained, while paralogs gen-
erally develop new functionality. Graphically, this relationship is shown in 
Fig. 9.13. The identification of orthologs is the primary goal in compara-
tive genomics, allowing for prediction of gene function, phylogenetic tree 
mapping, and comparative genome organization. 

The identification of orthologs is associated with the location of clusters 
of orthologous groups (COGs). Each COG consists of orthologous genes 
or orthologous groups of paralogs from three or more phylogenetic line-
ages. Thus any two proteins from different lineages that belong to the same 
COG are orthologous, while each COG is thought to have evolved from a 
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single ancestral gene. The identification of COGs was implemented by 
Tatusov using pairwise sequence alignments of 17,967 sequences from 
seven complete genomes, and forms the basis of the NCBI COG Database. 

Fig. 9.13. Evolutionary Relationships (Suter-Crazzolara and Kurapkat 2001) 

As an outcome of comparative genomics, specifically, of eukaryote 
studies, the identification of human disease genes has been made (Purdue, 
2000). Orthologs of human disease genes can be seen in Table 9.6. Mutual 
identification schemes are possible with this approach. Cloned human dis-
ease genes can be used to search other eukaryote genomes. Alternatively, 
eukaryote disease genes can be used to search for orthologs in the human 
genome. 

This chapter has briefly introduced the various aspects of comparative 
modeling that point to a promising and bright future for bioinformatics re-
search. As discussed earlier, these processes offer a method for decipher-
ing a novel protein structure and functionality. As a result, evolutionary 
paths can be identified in relation to the ancestral forms. Comparative 
modeling on the genomic scale has shown the ability to classify proteins, 
highlight differences in genome structure, locate antibiotic targets for new 
drug treatments, show evolutionary changes at the genomic level, and pro-
vide the ability to identify human disease genes. Comparative modeling 
has therefore been shown to be one of the most powerful techniques in bio-
informatics, with a broad and diverse range of applications that may offer 
future research very promising results. 
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Table 9.6. Proposed Orthologs of Human Disease Genes (Purdue 2000) 

Disease (gene) Yeast C. elegans D. melanogaster 

      

Ataxia telangiectasia (ATM) + + +

Glycerol Kinase Deficiency (GK) + + + 

Hereditary non-polyposis colon cancer 
(MLH1 or MSH2) 

+ + + 

Wilson Disease (WND) + + +

  

Duchene muscular Dystrophy (DMD) - + + 

Marfan Syndrome (FBN1) - + + 

Neurofibromatosis type 2 (NF2) - + +

Polycystic Kidney Disease type 2 (PLK2) - + +

  

Multiple cancers (p53) - - + 

Multiple Endocrine Neoplasia type 1 (MEN) - - + 

Neurofibromatosis type 1 (NF1) - - +

Juvenile Parkinson’s Disease (parkin) - - + 

9.4 Probabilistic Modeling 

Enforced by the nonconforming variable nature of biological sequences, 
probabilistic modeling is an essential element of data analysis. Many prob-
abilistic approaches exist in the emerging field of bioinformatics. A brief 
overview that covers a limited subset of this modeling family is provided. 

9.4.1 Bayesian Networks 

Bayesian networks offer a combination of graph and probability theory; in 
the bioinformatics context, these networks can represent probabilistic con-
nections between genes. The modeling of regulatory links is an application 
of Bayesian networks. For a regulatory link between two genes, knowing 
the value of one gene allows the prediction of the value of another gene in 
the system. As an example, a link from gene X to gene Y may indicate that 
if gene X is high, gene Y has 80% chance of being high, 17% chance of 
being medium, and 3% chance of being low. Based on the ability of these 
networks to represent probabilistic connections between genes, Bayesian 
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networks have been used to analyze expression data (Friedman et al., 
2000). The advent of microarray chips and the massive amount of data re-
lating to the genomic complement of gene expression that can be retrieved 
simultaneously have made such processes a necessity. Once a model is de-
veloped, questions relating to gene expression level under different ex-
perimental conditions, and gene interrelationships via direct and indirect 
dependencies, can be answered. 

9.4.2 Stochastic Context-Free Grammars  

Within the context of bioinformatics applications, Stochastic Context-Free 
Grammars (SCFGs) are employed in RNA structural analysis. SCFGs 
form the foundation model for modeling the patterns in RNA families 
within the RFAM database (Washington University, 2003). SCFGs have 
been applied within comparative genomics to identify RNA genes across 
two different but related organisms. A comparative analysis of the poten-
tial homologs in RNA secondary structure indicates the presence of an 
RNA gene and a probable secondary structure. Models for RNA secondary 
structure prediction have also been proposed (Eddy and Eddy, 2000). 

9.4.3 Probabilistic Boolean Networks 

Probabilistic Boolean Networks extend the properties of Boolean networks 
to determine gene-gene interactions. The advantage of Boolean networks 
stems from their ability to qualitatively model genetic interactions. As an 
example, the interactions that govern the activity of the Rb protein 
(Shmulevich et al., 2002) are shown in Fig. 9.14. 

In Fig. 9.14, arrows represent activation lines while bars indicate inhibi-
tions. The right side of the figure shows the logic modeling of this scenario 
with four inputs and one output. The cell cycle that explains the regulation 
consists of a series of states modeled with ON/OFF Boolean semantics, as 
can be seen in Fig. 9.14. The modeling of cellular interactions accommo-
dates the actual states the cell transits through during its life cycle. 

In reality, interactions are not as simple as shown in Fig. 9.14. A more 
flexible method is needed, as more than one pathway may contribute to 
gene regulation. To account for such flexibility, a probabilistic approach 
called Probabilistic Boolean Networks was developed (Shmulevich et al., 
2002). This was implemented by extending the Boolean Networks to in-
clude more than one function per node. The basic component of such a 
network is shown in Fig. 9.15. 
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Fig. 9.14. Boolean cell regulation representation (Shmulevich et al., 2002) 

Fig. 9.15. Basic unit of Probabilistic Boolean Networks (Shmulevich et al., 2002) 

Figure 9.15 shows the alternative functions (“predictors”) that share 
common inputs x1 through xn to produce outputs of which one is selected. 
An entire probabilistic Boolean network would consist of n such units. The 
flexibility introduced by this probabilistic enhancement allows probabilis-
tic Boolean networks to be used as a tool for modeling gene regulatory 
networks. 
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9.5 Molecular Modeling 

Molecular modeling includes the set of computer-based methods that con-
struct, present, and modify molecular structures and reactions. The proper-
ties of such structures and reactions are governed by 3D representation of 
the participants in the system. Molecular modeling is carried out on many 
scales that include the visualization of simple 3D molecules and the analy-
sis and simulation of large complex protein molecules. The outcome from 
molecular modeling is mainly the capability to identify and understand the 
properties of the molecule under investigation. This section will discuss 
the major topics in molecular modeling. 

9.5.1 Molecular and Related Visualization Applications 

Molecular visualization is considered a valuable technique that aids the in-
terpretation and understanding of experimental results. Presented in this 
chapter are current visualization techniques, and their implications, to as-
sist the researcher. 

Fig. 9.16. Homologous Enzymes 1QCQ (Arabidopsis Thaliana) and 2AAK 
(Baker’s Yeast) (Ravichandran, November 2003) 
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Homology studies are enhanced through the use of visualization tech-
niques where domains can be visualized and the differential properties of 
the proteins can be discovered. In techniques like comparative modeling, 
discussed earlier, visualization can indicate resultant 3D differences be-
tween the target and template sequences. Figure 9.16 show two homolo-
gous enzymes of family Ubiquitin conjugating enzymes showing structural 
differences owing to their 43% sequence identity. 

This technique is a powerful tool in the modeling of enzyme-substrate 
interactions. The active enzyme site is routinely modeled to determine 
chemical interactions with the substrate, providing process knowledge to 
the investigator. The active site of the enzyme representing the functional 
center can be investigated through molecular modeling to determine its 
composition and properties (Varfolomeev et al., 2002). 

Visualization techniques are applied to drug design by modeling the 
drug targets, thereby enabling synthetic construction of the drug in a proc-
ess called structure-based drug design. Such approaches focus on identify-
ing molecules capable of disrupting the detrimental effects of the target 
molecule. A case study involves the search for deactivating HIV protease. 
The first step in such a process involves modeling the target molecule, in 
this case HIV protease. With the structure generated from processes like 
X-ray crystallography, the molecular model can be studied to locate a 
compound “inhibitor”, either in a chemical library or via synthesis, to 
block the active site of the enzymes. The structure-based drug design ap-
proach has significant benefits over traditional drug development methods. 
When a structure is modeled visually, the design of drugs is a logical next 
step, whereas trial-and-error modifications of pre-existing drugs are carried 
out in the traditional manner. This approach promises more rapid drug dis-
covery than traditional techniques. For instance, using HIV protease in-
hibitors, three drugs were developed in eight years, whereas using the tra-
ditional method, 10 to 15 costly years were spent in development (Zapp, 
2002). 

Much interest and research has been done and will continue to be done 
on the use of expression arrays to determine levels of gene expression un-
der disease or other defined conditions. The capture and accurate represen-
tation of the massive amount of data from such studies has led to the de-
velopment of the following visualization techniques: 

1. Scatter plots 
2. Heat maps 
3. Multidimensional scaling (principal components analysis) and 
4. Anatomical mapping 
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Scatter plots are used to show the level of gene expression from resul-
tant microarray data. A related scenario would see diseased sequences la-
beled Cy5 (red) and non-diseased sequences labeled Cy3 (green). Once 
processed, the resultant data can be represented by a scatter plot, as seen in 
Fig. 9.17. Genes falling outside the x2 difference in expression levels are 
selected for analysis. 

Fig. 9.17. Differential gene expression 

In Fig. 9.17, the regulation differences refer to the disease state. The 
scatter plot shows a degree of genes up-regulated (red) and down-regulated 
(green) in the diseased state; these can be further isolated and their interac-
tions more closely investigated. 

Heat maps are a visual representation, of gene expression allowing for 
two-dimensional analysis. In Fig. 9.18, columns represent the different 
treatments while rows represent expression profiles. In this manner, genes 
can be clustered according to their expressions. The technique is useful for 
gauging the effect of drugs on gene products. 

As seen earlier in the scatter plot, the color indicates the level of expres-
sion, with gene groupings showing similar expression profiles. 

Multidimensional scaling (Principal Components Analysis) is a statisti-
cal multivariate technique for the identification of key variables within a 
multidimensional dataset. The goal of such an approach is to reduce di-
mensionality while filtering noise to produce data in a form consistent with 
visualization techniques. 
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Fig. 9.18. Heat Map (Hunter February 2004) 

Anatomical mapping represents a visualization technique that arise from 
tissue-specific gene expression data. Methodologies such as the Serial 
Analysis of Gene Expression (SAGE, Velculescu et al., 1995) exist to pro-
file tissue-specific gene expressions. Databases that contain expression 
profiles for human tissues, such as GeneNote http://genecards.weizmann. 
ac.il/cgi-bin/genenote/home_page.pl; Shmueli et al., 2003) and other such 
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databases, have led to a visualization technique called Anatomical Map-
ping, as termed by Hunter (February 2004). Using the Anatomical Mapping 
technique, specific tissue gene expression data can be mapped to human 
anatomical models, as shown in Fig. 9.19. 

Fig. 9.19. Human anatomical model with gene expression overlay (Hunter Febru-
ary, 2004) 

In this chapter, a subset of current visualization techniques has been 
briefly discussed. The major goal of visualization in molecular and resul-
tant higher level methods is to aid understanding and interpretation of the 
target under analysis. 

9.5.2 Molecular Mechanics 

The modeling of molecules is governed by molecular mechanics. This 
process involves mathematical modeling of molecular geometries, ener-
gies, and other characteristics through adjusting bond lengths, bond angles, 
and torsion angles to equilibrium values determined by atomic hybridiza-
tion and bonding schemes. Geometry is calculated as a function of steric 
energy using the laws of Newtonian physics and experimentally derived 
values (Richon, 2001). These processes help define and, consequently, re-
fine molecular models. 
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9.5.3 Modern Computer Programs for Molecular Modeling 

Many software tools exist to aid molecular modeling. Three major Web-
based applications (Protein Explorer, Chime, and Deep View Swiss-Pdb 
Viewer) are presented in brief to highlight the scope of possible modeling. 

Fig. 9.20. Protein Explorer Interface 

Fig. 9.21. Chime Haemoglobin 
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“Protein Explorer”, available at http://www.proteinexplorer.org, is a free 
online utility to visualize 3D structures including proteins and nucleic ac-
ids showing ligand, inhibitor, and drug interactions. The target users for 
this software are university students and researchers, basically anyone who 
needs to view a 3D structure and its functional implications. Figure 9.20 
presents the interface and an example model. 

Fig. 9.22. RasMol Haemoglobin 

Chime, located at http://www.umass.edu/microbio/chime/, is a 3D 
molecule visualization browser plug-in derived from the standalone RaMol 
application (http://www.umass.edu/microbio/rasmol/getras.htm). Chime, 
therefore, is a presentation tool used by Web sites allowing users to view 
3D molecular structures, and supporting mouse rotation. RasMol is an off-
line visualization tool requiring PDB files for display. Protein Explorer 
employs Chime to view resultant 3D structures. Chime and RasMol inter-
faces are shown in Figures 9.21 and 9.22. 

 “Deep View Swiss-Pdb Viewer”, located at http://us.expasy.org/-
spdbv/, is a protein analysis tool downloadable for offline/online usage. 
This tool allows simultaneous sequence analysis with SWISS-Model inte-
gration, allowing for homology studies.  
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10.1 Introduction 

Everybody is interested in getting all the possibly useful information in 
biological data. How do we get it? We cannot go into the details of each 
and every sequence.  

A portion of a sequence, called subsequence, may occur repeatedly and 
have distinctive feature. This portion is known as motif, and will act as the 
starting point for any analysis of biological data. The motif may recur of-
ten in a set of protein sequences, with some variations. Generally, it has 
some important functional role. For example, it may contain information 
preserved by the evolutionary process. 

The pattern is generally used to represent anything that occurs repeat-
edly. It is used in all walks of life. From a statistical point of view, it is a 
repeated occurrence of sequential data. There are sequence and structure 
patterns that can be used to characterize proteins. Motifs are short patterns. 
A motif may represent biological information like the tertiary structure of 
the protein. On the other hand, a pattern in statistical rather than biological. 
A pattern can be defined as a motif if it is conserved strongly within a 
given set of sequences. All motifs are patterns, but not vice versa.  
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Once the motif is found, we can look for its repetition. This can be done 
using different pattern matching techniques. However, this is not an easy 
task, evident from the fact that genomic data available from different data-
bases across the world is so voluminous.  

The complexity of eukaryotic organisms is not proportional to the num-
ber of protein/encoding genes in the genome. The extent to which com-
plexity and gene number are unrelated became evident from the initial 
draft of the human genome. The current annotation of the human genome 
suggests there are not much more than 30,000 protein coding loci, only 
30% more than C. elegans (worm) and five times greater than S. cereve-
siae and (yeast). Analysis of the mouse transcriptome (Kawai et al., 2001, 
Okazaki et al., 2002) reveals that some additional complexity arises from 
the presence of many additional transcripts that do not encode proteins, 
and from the potential of alternative splicing to generate many different 
protein products from the same genomic locus. However, the final level of 
additional complexity arises from the control systems. Only a small pro-
portion of the genome is transcribed into mature mRNAs that may, or may 
not, encode proteins, yet, very substantial segments of the genome within, 
and between, transcribed regions are highly conserved at least across 
mammalian species (see: http://ecrbrowser.dcode.org/). These conserved 
regions contain the instructions that determine when and where transcrip-
tion occurs. In large measure, the complexity of higher eukaryotes arises 
from their ability to control transcription in space and time, so that a much 
larger number of possible combinations of gene products (that essentially 
equate with cell types and tissues) can be generated, and their functions 
coordinated and regulated. 

The genomic code that determines when and where transcription occurs 
is written in the DNA sequence upstream and downstream of the transcrip-
tion start site. Nuclear proteins that bind to these sequence elements in a 
sequence-specific manner determine the transcriptional activity of the lo-
cus. In general, our knowledge of transcription control of any particular 
gene has been determined empirically. At one time, experimenters cloned 
individual cDNAs, and used them as probes to measure levels of mRNA 
one at a time. More recently, the availability of cDNA microarrays has 
permitted complete transcriptome profiling of individual tissues or cell 
types responding to a stimulus. However, if we could read the transcrip-
tional code, such experiments would become at least partly redundant. We 
would be able to predict from genomic DNA sequence that a particular 
gene will be transcribed in a certain location, and in association with 
genes, that might contribute to the same pathway or biological function. 
This is not yet possible, but through the use of pattern recognition algo-
rithms, researchers can already identify statistically significant patterns 
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that are shared by the control regions of co-expressed genes, and that may 
be used to identify more genes in the same set. These patterns may also 
constitute the binding sites for candidate transcriptional regulatory proteins 
that can be experimentally validated. 

In this chapter, we will go through essentials of the relevant biology, 
and the problems and the challenges in the analysis of transcriptional con-
trol elements. We will discuss briefly the nature of transcription control, 
the basics of the major computational approaches, and the current limita-
tions in this field. 

10.2 Gene Regulation 

The process of transcription is initiated by the binding of RNA polymerase 
and associated proteins of the preinitiation complex to the transcription 
start point (TSP). Binding and initiation are controlled by transcription fac-
tors bound to elements within the vicinity of the TSP. Although transcrip-
tional output is commonly measured experimentally as if transcription 
were an analog process, it is actually digital. In a higher eukaryote, each 
diploid cell has two copies of each strand of DNA, packaged in a nucleo-
protein complex called chromatin and visible as a chromosome. At the 
level of a single gene on one chromosome, there are two forms of regula-
tion that are, essentially, all or nothing. Firstly, the locus can be in active or 
inactive chromatin. As a cell commits to a particular cell lineage, it 
switches off transcription of genes that will not be required for differenti-
ated functions, and these genes are commonly methylated on CG dinucleo-
tides, and assembled into heterochromatin, which is transcriptionally si-
lent. Aside from silent genes, within a given cell there are many other 
genes that are not actively transcribed at any particular time, and may be 
acutely and reversibly induced. They are in an active chromatin state, but 
signals from the environment determine whether mRNA is produced. 
There is a great deal of evidence that this is also a digital phenomenon at 
the level of individual DNA templates in single cells (Hume, 2000). Since 
transcription is a digital process, the transcriptional code, and the binding 
of specific DNA binding proteins, work by determining the probability that 
a gene is available for transcription, and whether, subsequently, it is actu-
ally transcribed at any particular time. The actual level of mRNA in cells is 
also regulated at other levels; the rate of transcriptional elongation, splic-
ing and processing, nuclear export and translation into protein; but that is 
not our concern here. 
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Transcription factors (TFs) are DNA-binding proteins that bind to DNA 
on specific cis-acting regulatory elements to increase or decrease the prob-
ability of transcription (Hume, 2000, Rombauts et al., and 2003). While 
genes of simpler eukaryotes contain relatively small numbers of binding 
sites for specific transcription factors, and these are usually found in a 
small window of 200-400bp 5’ of the transcription start point (the so-
called promoters), mammalian genes are more complex. Enhancer and si-
lencer regions that, respectively activate or repress transcription, may be 
found tens of kilobases upstream of the TSP, within the introns of the 
gene, or tens of kb 3’. For example, the CSF-1 receptor contains regulatory 
elements in the first intron (Tagoh et al., 2002). Many of these enhancer, 
and silencer regions, like those of the CSF-1R gene, are highly conserved 
across mammalian species. 

10.2.1 Promoter Organization 

Although promoters, enhancers, and silencers have many sequence ele-
ments in common, promoters must have one unique function, the ability to 
specify the TSP. The start points of many mammalian genes are fixed for 
an AT-rich sequence, the TATA/Box, or a separate sequence, the initiator. 
The start point is located in about 30 bp upstream of TSP and has a con-
sensus pattern of TATAAA. The initiator has a consensus pattern of 
YYANTAYY (Lemon and Tjian 2000); see Table 1. When these are ab-
sent, some genes that are expressed in many different cell types (so-called 
house-keeping genes) commonly have GC-rich sequences, and some genes 
expressed in cells of the immune system, such as macrophages, have 
purine-rich sequences. The latter classes tend not to initiate transcription at 
a precise point, but rather have multiple TSPs over a 50-100 bp window. In 
any case, each promoter type must provide the signal to recruit the basal 
transcriptional machinery, including the TATA-binding protein, TATA-
associated proteins (TAFs), and RNA polymerase II (Lemon and Tjian 
2000). In the absence of experimental data specifying the 5’ end of mRNA, 
the sequence features of promoters are not adequate for providing compu-
tational identification. In mammals, the situation is complicated by the fact 
that many genes have multiple promoters that determine initiation in dif-
ferent tissues. The tartrate-resistant acid phosphatase gene, for example, 
has separate TATA-containing and TATA-less promoters directing high-
level expression in osteoclasts and low-level housekeeping expression in 
other tissues (Walsh et al., 2003). 

A partial exception to the problem of a priori promoter identification is 
found in CG-rich promoters. Broadly speaking, in mammals there are two 
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classes of promoters – CpG-poor and CpG-rich promoters. The CpG island 
is a useful structure for predicting mammalian proximal promoters. The 
CpG dinucleotide is suppressed in frequency in mammalian genomes be-
cause of selective mutation, so clusters of high CG content (CpG islands) 
are a discernible landmark. CpG dinucleotides are often associated with 
methylation on cytosine, which, as mentioned above, is associated with 
gene inactivation and heterochromatin. In a vertebrate genome, about 
60%-90% of all CpGs are methylated, but CpG clusters associated with ac-
tive genes are generally unmethylated. They are usually few hundred to 
few thousand base pairs in length, and located near active regions around 
the promoters. Around 60% of the human and mouse genes contain CpG 
islands. (Antequera, 2003; Durbin et al., 1998; and Rombauts et al., 2003). 
However, it is not possible to determine the precise TSP within or around a 
CpG island, and many genes have several such islands. 

Outside of the TSP region, promoters, enhancers, and silencers bind the 
same sets of DNA binding proteins. Any one transcriptional control region 
can span from as as little 50 to more than 1,000 bp. Binding sites for indi-
vidual transcription factors are generally in the range from 5-20 bp, and 
within an enhancer or promoter there may be tandem repeats of sites for 
single factors, or for combinations of any number of factors. Sites can be 
overlapping and/or compound, for more than one factor binding coopera-
tively. A single gene with a promoter and multiple enhancers can readily 
have 50/100 identifiable transcriptional regulator sites. The combined ef-
fects of these sites determine the transcriptional regulation of the gene. No 
two genes have precisely the same set of motifs, present at the same loca-
tion relative to the TSP. The challenge is to identify those motifs within the 
vicinity of a gene that are likely to be of functional significance, and to de-
termine a pattern that can be compared to other genes to assess similarity 
and the likelihood of a common transcriptional output. 

10.3 Motif Recognition 

DNA binding proteins commonly contact multiple bases within their target 
sequence, and will tolerate single or even multiple base changes, albeit 
with reduced affinity. Sometimes, reduced affinity can be compensated for 
by cooperative binding by another factor to an adjacent site. The recogni-
tion site for any one factor is therefore recognized not as a single sequence, 
but as a family of motifs to which the factor can bind. The goal of pattern 
recognition in this context is to identify subsequences in your query se-
quence that are likely to bind a particular factor. The query sequence in 
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this context can be a gene sequence or a selected genomic sequence where 
you want to match your pattern or motif. Generally, motif detection scans 
the query sequence by a given window size, and evaluates the subsequence 
in the current window to the selected motif definition. The window size is 
set to the length of the motif, and slides across the sequence one base at a 
time until it reach the end of the query sequence. A match occurs if the 
subsequence in the current window matches the motif definition under the 
preset user condition (Fig. 10.1c). Motifs are derived from sampling a col-
lection of binding site sequences for a selected TFs usually determined ex-
perimentally and available in a number of public databases such as Trans-
Fac. 

The success and significance of matching through such a search depends 
upon the definition of a motif, which must maximize the true positive rate, 
as opposed to the false positive derived from random occurrence of the se-
quence in DNA. There are two ways of representing a motif, either by a 
consensus pattern or by a probability matrix. A consensus pattern is a 
string of letters, that defines your query sequence, which can match to at a 
given position (Fig. 10.1a). As described above, the approach uses a win-
dow with the size of the motif to scan the query sequence. As it scans 
through each subsequences the window, it attempts to match the sub-string 
to the consensus pattern (Fig. 10.1c). Normally, the user assigns a mis-
match limit to allow a hit to have mismatches within the subsequence. A 
higher mismatch limit will allow matches to more degenerate motifs and a 
low limit will yield only stringent matches. The advantage of this approach 
is that matches are easily defined and interpreted, as either all or nothing; 
its disadvantage is that mismatches, if permitted, are given equal weight-
ing, but a particular mismatch might be completely non-functional as a 
binding site. So, the false positive rate tends to be fairly high. 

The matrix approach uses probabilities to define the motif. A matrix 
representation assigns a probability of a particular base occurring at a cer-
tain position in the motif. This approach takes account of the fact that cer-
tain contact residues in a motif may be absolutely required for significant 
binding, others may tolerate two or three alternatives, while others yet may 
be non-contact spacers tolerant of any base. In this approach, the query se-
quence is again scanned from one end to the other. The subsequence yield 
from each window slide generates a probability score. Here, a match was 
when the probability score is better then a defined threshold (Fig. 10.1b). 
In general, a probability value (p-value) is calculated; this value rates the 
probability the subsequence matched the motif of being randomly (Fig. 
10.1d). Hence, the lower the p-value, the more significant is the match. If 
the score of the sequence within the current window is lower than any so 
far competed, it is the p-value cutoff and is considered a match. The ad-
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vantage of this approach is that the user can define the threshold, providing 
a much greater control in filtering the matches. It provides a statistically 
meaningful way for describing the motif, generating a meaningful prob-
ability score, just identifying a match. The statistic - based approach offers 
solutions to cases where the contents of regions in the query sequence are 
biased toward the motif composition. With such an approach, one can cor-
rect the probability for a background; for example, a specific GC-rich se-
quence, such as a binding site for the factor Sp1, would require a higher 
level of match to reach significance if it occurred within a CpG island. 
Each its motif requires own probability cutoff, based on the background 
and the biological context of different query sequences. This requires more 
complex information, to be collected for each of the motifs. 

Regardless of whether one takes a simple consensus or a matrix as the 
basis for searching, mammalian genes have search windows that are just 
too large. Given the size and degeneracy of transcription factor binding 
sites, all sites occur randomly in genomic DNA with significant frequency, 
and when one is dealing with control regions extending over tens of kilo-
bases, an attempt to identify the functional elements in any single gene is 
futile. For this reason, the search has to be focused on narrower regions, or 
the significance has to be reinforced by searching a larger set of examples 
of genes that share regulation to identify patterns in common. 

10.4 Motif Detection Strategies 

There have been two major approaches to increasing the statistical power 
of pattern recognition motif searching algorithms, the “Multi-genes, single 
species” and the “Single gene, multi-species” and (Pennacchio and Rubin 
2001, Wang and Stormo, 2003). The “Multi-genes, single species” ap-
proach relies on the conservation of the regulatory mechanism between 
clusters of co-regulated genes. We infer, for example, that the large set of 
genes induced by lipopolysaccharide in macrophages (Wells et al., 2003) 
will have common elements that are recognized by LPS-inducible tran-
scription factors, such as the nuclear factor/kB. The “single gene, multi-
species” approach is based upon the assumption that the core regulatory 
mechanism will be conserved across groups of evolutionally related spe-
cies, and that the motifs involved will approximately be in the same place 
or have approximately the same relative abundance. Neither approach is 
entirely adequate. The logical extension is to combine the two into “Multi-
genes, multi-species” (Wang and Stormo, 2003). 
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Fig. 10.1. Motif Detection. (a) An example of a consensus pattern at the top and 
an example of a probability weight matrix at the bottom. (b) An example of using 
a window size of four to scan across the query sequence and retrieve the subse-
quences within each window. (c) Here, a match is show when using a consensus 
pattern to scan the query sequence to obtain a match (in blue). (d) Use of an 
equivalent matrix to scan the query sequence to obtain the same match 

10.4.1 Multi-genes, Single Species Approach 

The transcriptional output of a cell in response to any signal involves coor-
dinated expression of many different genes. The advent of cDNA microar-
ray transcriptional profiling permits precise clustering of co-regulated 
genes. Even in simpler organisms such as yeast, a simple stimulus such as 
nutrient deprivation can induce hundreds of target genes. A large amount 
of experimental data supports the view that many clusters of co-regulated 
genes represent transcriptional targets of a small number of transcription 
factors, and that their promoters correspondingly contain recognition sites 
for those factors, albeit in subtly different contexts (DeRisi et al., 1997, 
and Lee et al., 2002). 

The “multi-genes, single species” approach to identification of transcrip-
tion factor motifs and more global transcriptional codes relies on searching 
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the regulatory domains of as many co-regulated genes as possible in paral-
lel. The main advantage of this approach is that it increases the signifi-
cance value for prediction of motifs above the random background. For 
example, if a query sequence contains only one degenerate copy of the tar-
get motif, then prediction based upon that query sequence alone will not 
yield a statistically significant value to provide a confident match. On the 
other hand, if the same target motif occurs once or more often in each 
member of a cluster of 50 co-regulated genes, even a fairly degenerate mo-
tif that is common to the cluster might be identified with confidence. 

Even with this statistical power, the performances of the predictions are 
influenced by the degeneracy of the motif and the size of the chosen search 
window in each gene, which is generally arbitrary. If the target motif has a 
degeneracy of approximately 30% or more, then the predictions becomes 
very unreliable (Wang and Stormo, 2003). The impact of degeneracy is in 
part dependent upon the random background frequency, which can, for ex-
ample, be a function of base composition as well as length of the motif. 

The assumption that co-regulated genes necessarily have common regu-
latory mechanisms is also not always correct. A large group of genes in-
duced by a particular stimulus might be divided into sub-groupings based 
on their spatial and temporal profiles. Individual signals commonly initiate 
multiple parallel signaling pathways, which may target a subset of genes 
regulated by distinct sets of transcription factors. An example is the re-
sponse of macrophages to lipopolysaccharide (Sweet and Hume, 1996). 

10.5 Single Gene, Multi-species Approach 

This concept is based upon the view that genuinely orthologous genes that 
have the same regulatory pattern in different species are likely also to share 
the basic features of transcriptional control. This approach is sometimes 
called phylogenetic profiling. The presumption is that the motifs that con-
trol transcription will be conserved. If we focus a motif search only on re-
gions that are conserved between species, the search window can be 
greatly reduced, with a consequent increase in the probability of identify-
ing functional elements. There are two provisos to such an analysis. 
Firstly, the species chosen must be sufficiently related that the gene com-
plement is similar, but sufficiently divergent so that the functional ele-
ments have been conserved against a background of sequence divergence. 
In practice, for mammals the comparison between mouse and human is 
frequently informative, highlighting blocks of evolutionary conserved se-
quences among stretches of completely divergent sequences (see the Web-
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site cited above). The conservation of control sequences in blocks is likely 
to reflect the fact that motifs can only function if they are accessible within 
the chromatin structure, and chromatin remodeling generally occurs over 
larger domains coincident in part with supercoiling of the DNA in nu-
cleosomes. By contrast, a comparison between humans and apes, or be-
tween rats and mice, would contribute much less to reduction of the search 
window. The comparison becomes more powerful more species are avail-
able, and the rapid sequencing of other mammals will undoubtedly in-
crease the confidence of this approach. 

In general, there are two ways to perform these analyses. The first ap-
proach is to extract the block of conserved non-coding sequences shared 
with orthologous genes, and focus the motif search solely on that region. 
The alternative is to carry out the motif search on each of the orthologs, 
and identify those elements that are present in all orthologs. The latter ap-
proach has the advantage of not assuming that the function motifs occur 
within blocks, and of not being dependent upon the accuracy of align-
ments. Alignments are not always straightforward, because insertions of 
repeats, such as line elements, can alter the spacing between enhancers and 
promoters. For example, in the urokinase plasminogen activator gene, 
there are three highly/conserved regions that function as enhancers, up to 
8.2 kb upstream of the TSP, but their relative positions differ between spe-
cies due to repeat element insertions (Stacey et al., 1995). 

The predictive value of this method depends upon the accuracy of 
orthology relationships. This is particularly complex within multigene 
families, where evolutionary change can occur by gene duplication and de-
letion. In such circumstances, there may be no true ortholog. This was 
highlighted recently in a analysis of the S100 gene cluster, which has dif-
ferent numbers of genes in mouse and human (Ravasi et al.). When a 
cDNA of interest generates multiple hits on a genomic sequence, it is not 
necessarily the best hit that is the ortholog. Apart from the existence of 
multiple related functional protein/coding genes, one can encounter proc-
essed and unprocessed pseudogenes. In such circumstances, there may be 
no choice but to combine from the information literature on expression and 
function, evidence of synteny (gene order on the chromosomes of the two 
species), and any other available evidence before deciding upon orthology. 
Conversely, the presence of large regions of a conserved non-coding se-
quence can of itself support the view that two genes from different species 
are likely orthologs. 

Some of the phenotypic differences between species arise precisely be-
cause they regulate transcription in distinct ways, even when the protein 
product has the same basic function. For example, the toll-like receptor 2 
gene (TLR2) is functionally orthologous in mouse and human, but is regu-
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lated very differently and has little promoter conservation (Rehli, 2002). 
To some extent, this problem can now be obviated by comparing microar-
ray expression profiles across species, and eliminating from consideration 
putative orthologs that are clearly not regulated in the same manner. 

10.6 Multi-genes, Multi-species Approach 

This approach inherits the strengths and weaknesses of both the above ap-
proaches. In general, the “single gene multi-species” approach is less com-
putationally intensive, since one is typically dealing with only a small 
number of species, and is usually carried out first. For each member of a 
cluster of co-regulated genes, we assemble the conserved non-coding re-
gion and carry out an analysis to identify conserved motifs or motifs that 
fit the predetermined matrices discussed above. The predictions are then 
merged to determine which motifs are over-expressed in the cluster. The 
analysis can potentially be sufficiently large that false positives become 
unimportant. In fact, one can decide to include all putative orthologs for 
any gene within the cluster, and examine them individually in retrospect to 
decide which of them contain motifs common to the co-regulated set. 

10.7 Summary 

As noted in the introduction, any mammalian gene may have 50/100, or 
more, binding sites for transcription factors scattered among promoters and 
enhancers. Typically, there are multiple sites bound by any single tran-
scription factor. As noted above, genuine transcriptional regulatory ele-
ments tend to be clustered within conserved non-coding regions. There are 
many transcription factors that bind or act cooperatively, for example, the 
Ets and AP1 families (Stacey et al., 1995), so that their respective recogni-
tion motifs commonly occur side-by-side if they are functional. Regardless 
of the method used above, one can achieve an additional constraint on 
analysis and greater confidence in predictions by searching for clusters of 
predicted elements using programs such as Cluster Bluster (Frith et al., 
2003). If the same clusters occur in genes with similar regulatory patterns, 
or across species, the analysis can have an additional predictive power. 
When one includes multiple genes, the order and location of sites becomes 
irrelevant, and the output one seeks is the incidence of a particular site 
within a cluster, and its frequency when it is present. This constraint, in 
addition to those above, can help overcome the problem of transcription 
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factor binding site degeneracy, and take us to a position in which it may be 
possible to design machine learning approaches that can distinguish classes 
of genes and likely transcriptional outputs based upon genomic sequence 
information alone. 
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11.1 Introduction 

Biological sequences can be treated as either deoxyribonucleic acid (DNA) 
sequences or amino acid sequences (also known as protein sequences). 

In the past two decades, there has been tremendous interest in trying to 
unravel the mysteries of DNA. The hereditary information of organisms 
(except for RNA/viruses) is encoded in their DNA sequences. These se-
quences are one-dimensional linear polymers that are produced from four 
different monomers (nucleotides), namely, adenine (a), cytosine (c), gua-
nine (g), and thymine (t). A large amount of information concerning origin 
of life, evolution of species, development of individuals, and expression 
and regulation of genes exists in these sequences (Luo et al., 1998). As far 
as encoded information is concerned, we can ignore the fact that DNA ex-
ists as a double helix of two “conjugated” strands and treat it as a one-
dimensional symbolic sequence made out of the four letters from the al-
phabet {a, c, g, t}. A DNA sequence identifies a given species and distin-
guishes it from all other species, even those having the same nucleotide 
composition. The nucleotide sequence is called the primary structure since 
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it is the most basic level of a structure, and also defines the higher levels of 
the structure (secondary, tertiary, etc.). The most basic step in the study of 
DNA is to determine its nucleotide sequence. After a DNA is sequenced, 
the next step is to find different functional regions in it. How to gain more 
bio-information from these DNA sequences is a challenging problem. The 
nucleotide sequences stored in GenBank have exceeded hundreds of bil-
lions of base pairs, and they increase ten-folds/every five years. It has be-
come essential to improve on new theoretical methods to perform DNA 
sequence analyses. In the theory of molecular biology, there is an impor-
tant law called the central dogma, shown in Fig. 11.1. The relationship 
DNA and the biological functions can be understood from this figure. 

Fig. 11.1. The central dogma in showing how DNA controls the biological func-
tions 

Finding the three-dimensional structure of proteins is a complex physi-
cal and mathematical problem of prime importance in molecular biology, 
medicine, and pharmacology (Chothia, 1992, and Shih, 2000). A protein is 
composed of one or more chains that are covalently joined. The chains of 
amino acids are called polypeptides. Twenty different kinds of amino acids 
are found in proteins. So a protein sequence is commonly formed by 
twenty different kinds of amino acids, namely, Alanine (A), Arginine (R), 
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Asparagine (N), Aspartic acid (D), Cysteine (C), Glutamic acid (E), 
Glutamine (Q), Glycine (G), Histidine (H), Isoleucine (I), Leucine (L), Ly-
sine (K), Methionine (M), Phenylalanine (F), Proline (P), Serine (S), 
Threonine (T), Tryptophan (W), Tyrosine (Y), and Valine (V) (Brown, 
1998, p. 109). The one-letter and three-letter abbreviations, the molecular 
weight, and the polarity of the R group of these amino acids are shown in 
Table 11.1. The coding of DNA sequences can be translated into amino 
acid sequences as stipulated in the genetic code shown in Table 11.2. 

Table 11.1. Twenty kinds of amino acids 

AbbreviationAmino acid 
3-letter 1-letter 

Molecular 
weight 

Polarity of 
R group 

Alanine ala A 89.1 Non-polar 
Arginine arg R 174.2 Positive polar 
Asparagine asn N 132.1 Uncharged polar 
Aspartic acid asp D 133.1 Nagative polar 
Cysteine cys C 121.2 Uncharged polar 
Glutamic acid glu E 147.1 Negative polar 
Glutamine gln Q 146.2 Uncharged polar 
Glycine gly G 75.1 Uncharged polar 
Histidine his H 155.2 Positive polar 
Isoleucine ile I 131.2 Non-polar 
Leucine leu L 131.2 Non-polar 
Lysine lys K 146.2 Positive polar 
Methionine met M 149.2 Non-polar 
Phenylalanine phe F 165.2 Non-polar 
Proline pro P 115.1 Non-polar 
Serine ser S 105.1 Uncharged polar 
Threonine thr T 119.1 Uncharged polar 
Tryptophan trp W 204.2 Non-polar 
Tyrosine tyr Y 181.2 Uncharged polar 
Valine val V 117.2 Non-polar 

The standard abbreviation that is used most frequently is the 3-letter one. The 1-
letter abbreviation should only be used to save space when listing the amino acid 
sequence of a polypeptide. The above table is taken from page 109 of Brown 
(1998). 

It is believed that the dynamical folding process and stable structure, or 
native conformation, of a protein are determined by its primary structure, 
namely, its amino acid sequence (Anfinsen, 1973, and Shih, et al., 2002). 
The 20 amino acids in natural polypeptides can occur in any number and 
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any order. Because the number of amino acids in a polypeptide molecule 
usually ranges from 100 to 1,000, the number of different protein mole-
cules possible is enormous. Once an amino acid sequence is known, the 
number of foldable spatial structures possible is also enormous. Prediction 
of the high level structures, such as secondary and spatial structures from 
the amino acid sequence, is a challenging problem, particularly for large 
proteins. A number of coarse-grained models have been proposed to pro-
vide insight into these very complicated issues (Shih et al., 2002). 

Table 11.2. Genetic code 

UUU 
UUC 
UUA 
UUG 

phe 
phe 
leu 
leu 

UCU 
UCC 
UCA 
UCG 

ser 
ser 
ser 
ser 

UAU 
UAC 
UAA 
UAG 

tyr 
tyr 

stop 
stop 

UGU 
UGC 
UGA 
UGG 

cys 
cys 
stop 
trp 

CUU 
CUC 
CUA 
CUG 

leu 
leu 
leu 
leu 

CCU 
CCC
CCA 
CCG 

pro 
pro 
pro 
pro 

CAU 
CAC 
CAA 
CAG 

his 
his 
gln 
gln 

CGU 
CGC 
CGA 
CGG 

arg 
arg 
arg 
arg 

AUU 
AUC 
AUA 
AUG 

ile 
ile 
ile 
met 

ACU 
ACC 
ACA 
ACG 

thr 
thr 
thr 
thr 

AAU 
AAC 
AAA 
AAG 

asn 
asn 
lys 
lys 

AGU 
AGC 
AGA 
AGG 

ser 
ser 
arg 
arg 

GUU 
GUC 
GUA 
GUG 

val 
val 
val 
val 

GCU 
GCC 
GCA 
GCG 

ala 
ala 
ala 
ala 

GAU 
GAC 
GAA 
GAG 

asp 
asp 
glu 
glu 

GGU 
GGC 
GGA 
GGG

gly 
gly 
gly 
gly 

The content of this table is taken from Brown (1998), p. 120. 

A well known model in this class is the HP model proposed by Dill 
(1985). In this model, 20 kinds of amino acids are divided into two types, 
namely, hydrophobic (H) (or non-polar) and polar (P) (or hydrophilic). In 
the past decade, the HP model has been extensively studied by several 
groups (e.g. Shih et al., 2000; Li et al., 1996; Wang and Yu, 2000). From 
studying the model on lattices, a small number of structures are found with 
exceptionally high designability that a large number of protein sequences 
possess as their ground states (Li et al., 1996). These highly designable 
structures are found to have protein-like secondary structures (Shih et al.,
2000; Li et al., 1996; Micheletti et al., 1998). But the HP model may be too 
simple and lack sufficient information on the heterogeneity and complexity 
of the natural set of residues (Wang and Wang, 2000). According to Brown 
(1998), in the HP model, one can divide the polar class into three sub-
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classes: positive polar, uncharged polar and negative polar, (see Table 
11.1). So 20 different kinds of amino acids can be divided into four 
classes: non-polar, negative polar, uncharged polar, and positive polar. In 
this model, one considers more details than in the HP model. We call this 
model a detailed HP model.

In summary, we note some important problems in DNA and protein se-
quence analyses: 

• Distinguishing the functional regions in a DNA sequence; in particular, 
distinguishing coding sequences from noncoding sequences, something 
that is helpful in finding new genes; 

• Finding patterns in DNA and protein sequences; 
• Studying the classification and evolution of organisms; and  
• Predicting the native structure of a protein from its amino acid sequence. 

This chapter will present some tools built on the theory of fractal ge-
ometry, which may play a useful role in approaching the above problems. 
Fractal geometry provides a mathematical formalism for describing com-
plex spatial and dynamical structures (Mandelbrot, 1982, and Feder, 1988). 
The fractal method has been successfully used to study many problems in 
Physics, Mathematics, Engineering, and Biology over the past two dec-
ades. Multifractal analysis is a useful way to characterize the spatial het-
erogeneity of both theoretical and experimental fractal patterns (Grassber-
ger and Procaccia, 1983). Multifractal analysis was initially proposed to 
treat turbulence data. In recent years it has been applied successfully in 
many different fields, including time series analysis and financial modeling 
(Yu et al., 2001). In this chapter, we detail some geometrical representa-
tions of DNA and protein sequences, and apply the techniques to perform 
their fractal/multifractal analyses. 

11.2 Fractal Analysis 

11.2.1 What Is a Fractal? 

The word “fractal” was coined by Mandelbrot from the Latin fractus,
meaning broken, to describe objects that are too irregular to fit into a tradi-
tional geometrical setting (Falconer, 1990). Any fractal has a fine struc-
ture, i.e., details at all scales. Many fractals have some degree of self-
similarity: they are made up of parts that resemble the whole in some way. 
Sometimes the resemblance may be weaker than strict geometrical similar-
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ity; for example, the self-similarity may be approximate or statistical. Fal-
coner (1990) suggested that it seems best to regard a fractal as a set F that 
has the following properties: 

1. F has a fine structure, i.e., details on arbitrarily small scales; 
2. F is too irregular to be described in traditional geometrical language, 

both locally and globally; 
3. Often, F has some form of self-similarity, perhaps approximate or sta-

tistical; 
4. Usually, the “fractal dimension” of F (defined in some way) is greater 

than its topological dimension; and 
5. In most cases of interest, F is defined in a very simple way, perhaps 

recursively (e.g., Cantor set). 

The concept of “dimension” plays a central role in the study of fractals. 
Fundamental to most definitions of dimension is the idea of “measurement 
at scale δ ”. For each δ , we measure a set in a way that ignores irregu-
larities of size less than δ , and we want to see how these measurements 
behave as 0→δ . If we denote by )(FM δ the measurement, a dimen-

sion of F is then determined by a power law (if any) obeyed by )(FM δ

as 0→δ . If 

( ) sM F cδ δ −∝

for some constants c and s, we might say that F has “dimension” s, with c
regarded as the “s-dimensional measure” of F. Taking logarithms, 

δδ lnln)(ln scFM −≈

in the sense that the difference of the two sides tends to 0 with δ , and 

δ
δ

δ ln

)(ln
lim

0 −
=

→

FM
s .

These formulae are appealing for computational and experimental pur-
poses, since s can be estimated as the gradient of a log-log graph plotted 
over a suitable range of δ (Falconer, 1990). Box counting or box dimen-
sion is one of the most widely used dimensions. 
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11.2.2 Recurrent Iterated Function System Model 

Barnsley and Demko (1985) originally named a system of contractive 
maps },...,,{ 21 Nwwww = an iterated function system (IFS). Let 0E  be 

a compact set in a compact metric space, and define
)(... 0... 2121

EwwwE
nn σσσσσσ ooo=  and 

1 2 1 2, ,..., {1,2,..., } ...n nn NE Eσ σ σ σ σ σ∈= U

Then I
∞

=
=

1n nEE  is called the attractor of the IFS. The attractor is usu-

ally a fractal and the IFS is a relatively general model to generate many 
well known fractal sets such as the Cantor set and the Koch curve. Given a 

set of probabilities 0>ip , 1
1

=∑ =

N

i ip , pick an Ex ∈0  and define the 

iteration sequence 

)(1 nn xwx
nσ=+ ,...,3,2,1,0=n (11.1)

where the indices nσ  are chosen randomly and independently from the 

set },...,2,1{ N  with probabilities Pr ( )n ii ps = = . Then every orbit 

}{ nx  is dense in the attractor E (Barnsley and Demko, 1985, Vrscay, 

1991). For n large enough, we can view the orbit },...,,{ 10 nxxx as an ap-

proximation of E. This process is called chaos game.
Given a system of contractive maps },...,,{ 21 Nwwww =  on a compact 

metric space *E , we associate with these maps a matrix of probabilities 

)( ijpP = which is row stochastic, i.e., 1=∑ j ijp , Ni ,...,2,1= . Con-

sider a random chaos game sequence generated by 

)(1 nn xwx
nσ=+ ,...,3,2,1,0=n

where 0x  is any starting point, but now the indices nσ  are chosen with a 

probability that depends on the previous index 1−nσ ,

1 ,Pr ( )
nn ii pss + = =

which is the fundamental difference between this process and the usual 

chaos game Equation (11.1). Then ),,( * PwE  is called a recurrent iter-
ated function system (RIFS). 
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Let µ  be the invariant measure on the attractor E of an IFS or RIFS, 

Bχ  the characteristic function of the Borel subset EB ⊂ , then, from the 
ergodic theorem for IFS or RIFS (Barnsley and Demko, 1985), 

⎥
⎦

⎤
⎢
⎣

⎡

+
= ∑

=∞→

n

k
kB

n
x

n
B

0

)(
1

1
lim)( χµ .

In other words, )(Bµ  is the relative visitation frequency of B during 
the chaos game. A histogram approximation of the invariant measure may 
then be obtained by counting the number of visits made to each pixel on 
the computer screen. 

11.2.3 Moment Method to Estimate the Parameters of the IFS 
(RIFS) Model 

The coefficients in the contractive maps and the probabilities in the RIFS 
model are parameters we want to estimate from an observed measure for 
its representation or simulation. A moment method can be used to estimate 
these parameters (Vrscay, 1991). If µ  is the invariant measure and A the 

attractor of an RIFS in R, the moments of µ are given by 

,µdxg
A

i
i ∫= .10 == ∫A

dg µ (11.2)

If ,)( iii dxcxw += Ni ,...,1= , the following well known recursion re-

lations hold for the IFS model: 
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11 1

).(]1[ (11.3)

Thus, setting 10 =g , the moments 1, ≥ngn , may be computed recursively 

from the knowledge of 110 ,...,, −nggg  (Vrscay, 1991). 

For the RIFS model, we have 

,
1

)(
∑

=

=
N

j

j
nn gg (11.4)

where )( j
ng , 1,2,..., ,j N=  are given by the solution of the following 

system of linear equations: 
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For n=0, we set i
i mg =)(

0 , where im  are given by the solution of the lin-

ear equations 

,
1

ij

N

j
ji mmp =∑

=

,,...,2,1 Ni =  and .1
1

0 ==∑
=

N

i
img (11.6)

we obtain the estimated values of the parameters in the IFS or RIFS model. 
To our knowledge (Anh et al., 2001), it is much harder to simulate a 

measure than to fit its multifractal spectrum (because different measures 
may have the same multifractal spectrum). We found that the RIFS model 
can be used to simulate the measure representation of complete genomes, 
while the IFS model is useful for the simulation of the measure representa-
tion of protein sequences. In our study, the estimated parameters of an 
RIFS or IFS model are used to discuss the classification and evolutionary 
tree of living organisms and the structural classification of large proteins. 

11.2.4 Multifractal Analysis 

The most common numerical implementation of multifractal analysis is via 
the so-called fixed-size box counting algorithms (Halsy et al., 1986). In the 
one-dimensional case, for a given measure µ  with support ⊂E R, we 
consider the partition sum

q

B

BqZ ])([)(
0)(

∑
≠

=
µ

ε µ (11.8)

If we denote by kG  the moments obtained directly from the observed 

measure using Equation (11.2), and by kg the formal expression of mo-

ments obtained from Equations (11.3-11.6), then through solving the opti-
mal problem 

2

,
1

( )
i i ij i

n

k k
c d p or P

k

g G
=

−∑ , for some chosen n, (11.7)



322 Zu-Guo Yu et al. 

∈q R, where the sum runs over all different nonempty boxes B of a 
given side ε  in a grid covering of the support E, that is, 

])1(,[ εε += kkB  (11.9)

The scaling exponent )(qτ  is defined as  

ε
τ ε

ε ln

)(ln
lim)(

0

qZ
q

→
= (11.10)

and the generalized fractal dimensions of the measure are defined as 

)1/()( −= qqDq τ for 1≠q (11.11)

and 

ε
ε

ε ln
lim ,1

0

Z
Dq →

= , for 1=q (11.12)

where ∑ ≠
=

0)(,1 )(ln)(
B

BBZ
µε µµ . The generalized fractal dimen-

sions are numerically estimated through a linear regression of 

)(ln
1

1
qZ

q ε−

against εln  for 1≠q , and similarly through a linear regression of ε,1Z

against εln  for q = 1. D1 is called the information dimension and D2 the 
correlation dimension. The D1 corresponding to positive values of q give 
relevance to the regions where the measure is large. The Dq corresponding 
to negative values of q deal with the structure and the properties of the 
most rarefied regions of the measure. 

By following the thermodynamic formulation of multifractal measures, 
Canessa (2000) derived an expression for the “analogous” specific heat as 

)1()1()(2
)(

2

2

−−+−≈
∂

∂−≡ qqq
q

q
Cq ττττ

(11.13)

He showed that the form of Cq resembles a classical phase transition at a 
critical point for a financial time series. In the following we calculate the 
“analogous” specific heat of many kinds of measures we define for bio-
logical sequences. The types of phase transition are useful in the classifica-
tion of bacteria. 
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11.3 DNA Walk Models 

11.3.1 One-Dimensional DNA Walk  

A significant contribution in the study of DNA sequences is the investiga-
tion of the long-range correlation. One-dimensional DNA walk was firstly 
proposed by Peng et al., (1992). They define that the walk is “up,” u(i) = 
+1, when a pyrimidine (c or t ) occurs at position i along the DNA chain, 
while the walk is “down,” u(i) = -1, if a purine (a or g ) occurs at position 
i. The question they want to answer is 

Would such a walk display only short-range correlation or only 
long-range correlation (i.e., scale-free “fractal” phenomenon)? 

Define 

.)()(
1
∑

=
=

l

i

iuly

The root mean-square fluctuation )(lF  is defined by 

where 

).()(),( 000 lyllylly −+=∆

The average (denoted by a bar) is taken over all positions 0l  in the se-

quence. Using the root mean-square fluctuation, we can characterize the 
following cases: 

Case 1 Random or local correlation: 2/1)( llF ∝ .

Case 2 Long-range correlation: αllF ∝)(  with 1 / 2 1a< < .

Having calculated the exponents α for all DNA sequences available in 
GenBank at that time, they found: 

1. For coding sequences, the exponents are close to 0.5, indicating ran-
dom walks or local correlation. 

2. For noncoding sequences, ≈α  0.67, indicating that the walks display 
long-range correlation. 

1/2
2

0 0
( ) [ ( , ) ( , )]F l y l l y l l= ∆ −∆
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But their results have been disputed by some other researchers because 
they did not distinguish a between g in purines and c between t in 
pyrimidines in their DNA walk model. Buldyrev et al., (1994, 1998) and 
gave some explanations and improvements. By undertaking a more de-
tailed analysis, Larhammar and Chatzidimitriou-Dreismann (1993) con-
cluded that both coding and noncoding sequences exhibit long-range corre-
lation. A subsequent work by Prabhu and Claverie (1992) also 
substantially corroborates these results. 

11.3.2 Two-Dimensional DNA Walk 

Luo et al., (1988, 1998) defined two- or three-dimensional DNA walk 
models which distinguish c from t in pyrimidines, and a from g in purines. 
Define 
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Then the local fractal dimension is defined by 
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The local fractal dimension )(
0

NDN changes smoothly only for 

0NN ≤ . So we define 
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Df is called the average fractal dimension. When N is large enough, 
2)(

0
=NDN  for a random walk. Luo et al., (1988, 1998) found that 

1. Almost all Df of DNA sequences are different from 2; hence DNA se-
quences exhibit long-range correlation. 

2. Df of exons is larger than that of introns. 

11.3.3 Higher-Dimensional DNA Walk 

Berthelsen et al., (1992) considered the global fractal dimension of human 
DNA sequences treated as pseudorandom walks. Because this pseudoran-
dom walk model is rather complicated to detail here, we refer the inter-
ested reader to the original paper. They considered the fractal dimension of 
this kind of representation of long DNA sequences and found 

1. The global fractal dimensions of coding sequences are different from 
those of noncoding sequences. 

2. The DNA sequences used are not random sequences. 

11.4 Chaos Game Representation of Biological 
Sequences 

11.4.1 Chaos Game Representation of DNA Sequences 

Based on a technique from chaotic dynamics, Jeffrey (1990) proposed a 
chaos game representation (CGR) of DNA sequences by using the four 
vertices of a square in the plane to represent a, c, g, and t. The first point of 
the plot is placed half-way between the center of the square and the vertex 
corresponding to the first letter, the ith point of the plot is placed half-way 
between the (i-1)th point and the vertex corresponding to the ith letter in 
the DNA sequence. The method produces a plot of a DNA sequence that 
displays both local and global patterns. Self-similarity or fractal structures 
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were found in these plots. Some open questions from the biological point 
of view based on the CGR were proposed (Jeffrey, 1990). 

11.4.2 Chaos Game Representation of Protein Sequences 

The idea of CGR of DNA sequences proposed by Jeffrey (1990) was gen-
eralized and applied for visualizing and analysing protein databases by 
Fiser et al., (1994). Generalization of CGR of DNA may take place in sev-
eral ways. In the simplest case, the square in CGR of DNA is replaced by 
an n-sided regular polygon (n-gon), where n is the number of different 
elements in the sequence to be represented. As proteins consist of 20 kinds 
of amino acids, a 20-sided regular polygon (regular 20-gon) is the most 
adequate for protein sequence representation. A few thousand points result 
in an “attractor” that allows visualization of the rare or frequent residues 
and sequence motifs. 

A new method was proposed for the chaos game representation of dif-
ferent families of proteins (Basu et al., 1998). Using concatenated amino 
acid sequences of proteins belonging to a particular family and a 12-sided 
regular polygon, each vertex of which represents a group of amino acid 
residues leading to conservative substitutions, the method generates the 
CGR of the family and allows pictorial representation of the pattern char-
acterizing the family. The CGRs of different protein families are found to 
exhibit distinct visually identifiable patterns (Basu et al., 1998). This im-
plies that different functional classes of proteins follow specific statistical 
biases in the distribution of different mono-, di-, tri-, or higher order pep-
tides along their primary sequences. 

11.4.3 Chaos Game Representation of Protein Structures 

The chaos game representation can also be used to study 3D structures of 
proteins (Fiser et al., 1994). Protein conformations can be characterized by 
a sequence of dihedral angles ),( ψφ  of the single bonds of αC atoms in 

the polypeptide chain. Due to steric restrictions that stem from high energy 
atomic overlap, there are only 16 areas on the ),( ψφ map the 
Ramachandran plot available for low energy structures. The conformation 
of a polypeptide chain can be characterized by the sequence of these low 
energy areas along the polypeptide chain. Thus protein structures can be 
visualized in a way analogous to that put forward for sequences by using 
16-gons instead of 20-gons. 
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We then obtain a sequence LaaasX ...)( 21= , where ia  is a letter in the 

alphabet {0, 1, 2, 3}. We next define the chaos game representation for a 
sequence )(sX  in the square ]1,0[]1,0[ × in a similar way to that of 
DNA sequences (Jeffrey 1990), where the four vertices correspond to the 
four letters 0, 1, 2, 3: The first point of the plot is placed half-way between 

In most cases, a less detailed structure description, with reference to he-
lix, sheer, turn, and “random coil” structures, is used for characterizing the 
polypeptide structure (Fiser et al., 1994). When one deals with exactly four 
kinds of elements, the original CGR was suggested (Jeffrey, 1990) for 
DNA can be used by replacing the four nucleotides with the four secon-
dary structure elements at the vertices of the square. However, one of the 
four structural elements, the random coil, is not a regular one, so it is not as 
important as the other three. Therefore, instead of a square, one of the 
regular structure elements (helix, sheet, or turn) can be selected and placed 
at the vertices of a regular triangle, while the random coil structure is rep-
resented by the center of this triangle (Fiser et al., 1994). If the distribution 
of the secondary structure elements were random, it would have a Sierpin-
ski-like triangle, but as the central point is also used a reference point, a 
new Sierpinski triangle appears without overlapping the original one. 

11.4.4 Chaos Game Representation of Amino Acid Sequences 
Based on the Detailed HP Model 

In the detailed HP model, the 20 kinds of amino acids are divided into four 
classes: non-polar, negative polar, uncharged polar, and positive polar. The 
eight residues designating the non-polar class are ALA, ILE, LEU, MET, 
PHE, PRO, TRP, and VAL; the two residues designating the negative po-
lar class are ASP, GLU; the seven residues designating the uncharged po-
lar class are ASN, CYS, GLN, GLY, SER, THR, and TYR; and the re-
maining three residues ARG, HIS, and LYS, designate the positive polar 
class. 

For a given protein sequence with length L, Lssss ...21= , where 

Lisi ,...,2,1, = , is one of the 20 kinds of amino acids. We define 

0, ,

1, ,

2, ,

3, .

i

i

i

i

i

if s non polar

if s negative polar
a

if s uncharged polar

if s positive polar
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the center of the square and the vertex corresponding to the first letter of 
the sequence )(sX ; the ith point of the plot is then placed half-way be-
tween the (i-1)th point and the vertex corresponding to the ith letter. We 
then call the obtained plot the chaos game representation of the protein se-
quence s based on the detailed HP model. 

Fig. 11.2. The chaos game representation for the linked protein sequence from the 
genome of Buchnera sp. APS (185,827 amino acids) 

Fig. 11.3. The chaos game representation for the linked protein sequence from the 
genome of Methanobacterium thermoautotrophicum deltaH, (528,191 amino ac-
ids) 
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Each coding sequence in the complete genome of an organism can be 
translated into a protein sequence using the genetic code (Brown, 1998, p. 
122). We next link all translated protein sequences from a complete ge-
nome to form a long protein sequence according to the order of the coding 
sequence in the complete genome. As a result, we obtain a linked protein 
sequence for each organism. In this Subsection, we consider only this kind 
of linked protein sequence for the organisms and view them as symbolic 
sequences. Then the CGR defined above of the linked protein sequence of 
an organism is called the CGR of the organism. For example, the CGR of 
Buchnera sp. APS is given in Fig. 11.2 and that of Methanobacterium 
thermoautotrophicum deltaH is given in Fig. 11.3. Fractal patterns are ap-
parent in these CGRs. 

Fig. 11.4. The histogram of µ  based on a 64×64 mesh of Buchnera sp. APS 

Considering the points in a CGR of an organism, we can define a meas-
ure µ  by =)(Bµ #(B) / 1N , where #(B) is the number of points lying in 

the subset B of the CGR and 1N  is the length of the sequence. We can di-

vide the square ]1,0[]1,0[ ×  into meshes of size 64 × 64, 128 × 128, 
512×512 or 1024× 1024. This results in a measure for each mesh. The 
measure µ  based on a 64×64 mesh of Buchnera sp. APS is given in Fig. 
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11.4 as an example. We then can obtain a 64×64, 128×128, 512×512 or 
1024×1024 matrix A, where each element is the measure value on the cor-
responding mesh. We call A the measure matrix of the organism. Multi-
fractal analysis of these measures can be performed based on the CGR rep-
resentation (see Yu et al., 2003). Because the linked protein sequences of 
Eukaryotes are too long, the CGR method described in this Subsection 
does not seem suitable for their analysis. 

11.5 Two-Dimensional Portrait Representation of DNA 
Sequences  

Since the first complete genome of the free-living bacterium Mycoplasma 
genitalium was sequenced in 1995 (Fraser et al., 1995), an ever growing 
number of complete genomes has been deposited in public databases. The 
availability of complete genomes makes it possible to ask some global 
questions about these sequences. One of the simplest questions concerns 
checking whether there are short strings of letters that are absent or under-
represented in a complete genome. The answer is in the affirmative, and 
the fact may have some biological meaning (Hao et al., 2000). 

The reason why we are interested in absent or under-represented strings 
is twofold. First, this is a question that can be asked nowadays only when 
complete genomes are at our disposal. Second, the question makes sense 
since one can derive a factorizable language from a complete genome that 
would be entirely defined by the set of forbidden words. 

We start by considering how to visualize the avoided and under-
represented strings in a bacterial genome whose length is usually in the or-
der of a million letters. A simple visualization method was proposed based 
on counting and coarse-graining the frequency of appearance of strings of 
a given length (Hao et al., 2000). When applying the method to all known 
complete genomes, fractal-like patterns emerge. Fractal dimensions are the 
basic and important quantities that characterize the fractal. One would 
naturally ask: what are the fractal dimensions of fractals related to lan-
guages defined by tagged strings? In this Subsection we will answer the 
question. 

11.5.1 Graphical Representation of Counters 

We call any string made of K letters from the set {g, c, a, t} a K-string. For 

a given K, there are in total K4  different K-strings. In order to count the 
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number of each kind of K-strings in a given DNA sequence K4  counters 
are needed. These counters may be arranged as a KK 22 ×  square, as 
shown in Fig. 11.5 for .3,2,1=K

Fig. 11.5. The arrangement of string counters for K=1 to 3 in squares of the same 
size 

Fig. 11.6. ctag-tagged strings in K=6 to 9 frames 
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In fact, for a given K the corresponding square may be represented as a di-
rect product of K copies of identical matrices: 

MMMM K ⊗⊗⊗= ...)( ,

where each M is a 22×  matrix 

⎥
⎦

⎤
⎢
⎣

⎡
=

ta

cg
M ,

that represents the K=1 square in Fig. 11.5. For the convenience of pro-
gramming, we use binary digits 0 and 1 as subscripts for the matrix ele-
ments, i.e., let gM =00 , cM =01 , aM =10 , and tM =11 . The sub-

scripts of a general element of the KK 22 ×  direct product matrix )(KM ,

KK jijiji
K
JI MMMM ...

2211

)(
, =

,

are given by KiiiI ...21=  and KjjjJ ...21= . These may be easily cal-

culated from an input DNA K-string Kssss ...21= , where 

},,,{ tacgsi ∈ . We call this KK 22 ×  square a K-frame. Put in a frame 

of fixed K and described by a color code biased toward small counts, each 
bacterial genome shows a distinctive pattern which indicates absent or un-
der-represented strings of certain types (Hao et al., 2000). For example, 
many bacteria avoid strings containing the string ctag. Any string that con-
tains ctag as a substring will be called a ctag-tagged string. If we mark all 
ctag-tagged strings in frames of different K, we get pictures as shown in 
Fig. 11.6. The large-scale structure of these pictures persists, but more de-
tails appear with growing K. Excluding the area occupied by these tagged 
strings, one gets a fractal F in the limit ∞→K . It is natural to ask what 
the fractal dimension of F for a given tag is. 

11.5.2 Fractal Dimension of the Fractal Set for a Given Tag 

Problem: How do we calculate the fractal dimension of F?
In formal language theory, we start with the alphabet },,,{ tgca=∑ .

Let *
∑  denote the collection of all possible strings made of letters from 

∑ , including the empty string ε . We call any subset *
∑⊂L  a lan-

guage over the alphabet ∑ . Any string over ∑  is called a word. If we 

denote the given tag as 0w , for our case,  
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L = {words do not contain 0w  as factor}. 

F is then called the fractal related to language L.
In using the box dimension, we can consider a more general case, i.e. 

the case of more than one tag. We denote the set of tags as B, and assume 
that there is element that is a factor of any other element in B. We define 

L1 = {words that do not contain any of the elements of B as a factor}.

Now, let Ka  be the number of all strings of length K that belong to 

language 1L . As the linear size Kδ  in the K-frame is K2/1 , the box di-
mension of F may be calculated as 

2ln

ln
lim

ln

ln
lim)(dim

/1 K
K

K
K

K

K
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aa
F

∞→∞→
=

−
=

δ
 (11.15)

We next define the generating function of Ka  as 

K

K
K sasf ∑

∞

=
=

0

)( ,

where s is a complex variable. 
First, 1L  is a dynamic language. From Theorem 2.5.2 of Xie (1996), we 

have 

K
K

K
a /1lim

∞→
 exists, (11.16)

which we denote as l. From Equation (11.15), we have 

2ln

ln
)(dim

l
FB = . (11.17)

For any word nwwww ...21= , ∑∈iw  for ni ,...,2,1= , we denote 

},...,...,,,{)( 121321211 −= nwwwwwwwwwwHead

}....,...,,,{)( 32121 nnnnnnn wwwwwwwwwwTail −−−=

For any two given words u and v, we denote 
)()(),( vHeaduTailvuoverlap ∩= . If )(vHeadx ∈ , then we can write 

xxv ′= . We denote xvx /=′  and define 
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∑
∈

=
),(

|/|:
vuoverlapx

xvsvu ,

where |/| xv  is the length of word xv / . From the Golden-Jackson 
cluster method (Noonan and Zeilberger 1999), we know that 

)(41

1
)(

Cweights
sf

−−
= ,

where ∑ ∈
=

Bv
vCweightCweight ])[()(  and ])[( vCweight  ( Bv ∈ )

are solutions of the linear equations 

∑
≠∈

−−−=
vuBu

v uCweightvuvCweightvvsvCweight
,

|| ])[():(])[():(])[( .

It is easy to see that )(sf  is a rational function. Its maximal analytic 

disc at center 0 has radius || 0s , where 0s  is the minimal module zero 

point of )(/1 sf . On the other hand, according to the Cauchy criterion of 
convergence, we have 1/l as the radius of convergence of the series expan-
sion of )(sf . Hence ls /1|| 0 = . From Equation (11.17), we obtain the 

following result.  

Table 11.3. Generating function and dimension for some single tags 

Tag )(sf )(dim FB Tag )(sf )(dim FB

g
s31

1

− 2ln

3ln ggg
32

2

3331

1

sss

ss

−−−
++

1.98235 

gc
241

1

ss +−
1.89997 ctag

441

1

ss +−
1.99429

gct
341

1

ss +−
1.97652 gcgc

32

2

441

1

ssss

s

+−+−
+

1.99463

Conclusion: The box dimension of F is 

2ln/||ln)(dim 0sFB −= ,

where 0s  is the minimal module zero point of 1 / f(s) and f(s)

is the generating function of language L1.
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In particular, the case of a single tag, i.e., B contains only one word, is 
easily treated, and some of the results are shown in Table 11.3. 

The fractal dimension of the limit set of portraits was discussed in Yu et 
al., 2000; Hao et al., 2001. We give only the result regarding the box di-
mension. The connection between Hao’s scheme and the chaos game rep-
resentation is established through the multifractal property (Tino, 2002). 

Fig. 11.7. The subintervals of [0,1[ which are used to represent K-strings for K=1 
and K=2 

11.6 One-Dimensional Measure Representation of 
Biological Sequences 

11.6.1 Measure Representation of Complete Genomes 

Measure representation  

The measure representation of complete genomes can be used to carry out 
their multifractal analysis (Yu et al., 2001). We divide the interval [0,1] 
into 4K disjoint subintervals, and use each subinterval to represent a 
counter. The order of these intervals corresponds to the dictionary order of 
these K-strings. 

Letting Kssss ...21= , where },,,{ tacgsi ∈ , ,,...,2,1 Ki =  be a sub-

string with length K, we define 

,
4

)(
1
∑

=
=

K

i
i
i

left

x
sx (11.18)

where 

⎪
⎩

⎪
⎨

⎧

=
=
=
=

=

,,3
,,2
,,1
,,0

tsif
gsif
csif
asif

x

i

i

i

i

i (11.19)
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and  

Kleftright sxsx
4

1
)()( += . (11.20)

We then use the subinterval )](),([ sxsx rightleft to represent substring s.

Let )(sN K  be the number of times that substring s with length K appears 
in the complete genome. If the total number of K-strings appearing in the 
complete genome is denoted by )(totalN K , we define 

)(/)()( totalNsNsF KKK = (11.21)

to be the frequency of substring s. It follows that ∑ =
}{

1)(
s K sF . Now 

we can define a measure Kµ  on [0,1] by dxxYxd KK )()( =µ , where 

),(4)( sFxY K
K

K =  when )](),([ sxsxx rightleft∈ (11.22)

It is easy to see ∫ =
1

0

1)(xd Kµ and )()])(),(([ sFsxsx KrightleftK =µ . We 

call Kµ  the measure representation of the organism corresponding to the 
given K. As an example, the histogram of substrings in the genome of M. 
genitalium for K = 3 and 6 are given in Fig. 11.8. Self-similarity is appar-
ent in these measures. 

For simplicity of notation, the index K is dropped in )(sFK , etc., from 
now on, where its meaning is clear. 

Fig. 11.8. Histograms of substrings with lengths K=3 and K=6 in the complete ge-
nome of M. genitalium 
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Remark: The ordering of a, c, g, t in Equation (11.19) will give the 
natural dictionary ordering of K-strings in the one-dimensional space. A 
different ordering of K-strings would change the nature of the correlations. 
When we want to compare different organisms using the measure repre-
sentation, once the ordering of a, c, g, t in Equation (11.19) is given, it is 
fixed for all organisms. 

Multifractal analysis 

Multifractal analysis was performed on the measure representations of a 
large number of complete genomes (Yu et al., 2001). As examples, the Dq

and Cq curves of some organisms are shown in Figures 11.9 and 11.10 re-
spectively. 

Fig. 11.9. Dimension spectra of Chromosome 22 of Homo sapiens, Chromosome 
2 of A. thaliana, Chromosome 3 of P. falciparum, Chromosome 1 of C. elegans,
and Chromosome 15 of S. cerevisiae and M. genitalium 

From the measure representations and the values of the Dq spectra and 
related Cq curves, it was concluded that these complete genomes are not 
random sequences. For substrings with length K = 8, the Dq spectra of all 
organisms studied are multifractal-like and sufficiently smooth for the Cq
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curves to be meaningful. With the decreasing value of K, the multifractal-
ity lessens. The Cq curves of all bacteria resemble a classical phase transi-
tion at a critical point. But the “analogous” phase transitions of chromo-
somes of non-bacteria organisms are different. Apart from Chromosome 1 
of C. elegans, they exhibit the shape of the double peaked specific heat 
function. 

Fig. 11.10. “Analogous” specific heat of Chromosome 22 of Homo sapiens,
Chromosome 2 of A. thaliana, Chromosome 3 of P. falciparum, Chromosome 1 of 
C. elegans, Chromosome 15 of S. cerevisiae, M. genitalium, and completely ran-
dom sequence 

RIFS model for simulation of the measure representation of 
complete genome 

From the measure representation of a complete genome, we see that it is 
natural to choose N=4 and 

1 2 3 4( ) / 4, ( ) / 4 1/ 4, ( ) / 4 1/ 2, ( ) / 4 3 / 4w x x w x x w x x w x x= = + = + = +

in the RIFS model. For a given measure representation of the complete ge-
nome of an organism, we obtain the estimated values of the matrix of 
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probabilities by solving the optimal problem. For example, when K=8, the 
estimated values of the matrix of probabilities of Buchnera sp. APS is 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0.4301290.1795540.1001920.290126

0.3834520.1489560.1678430.299749

0.3291070.1290880.1875150.354290

0.2697530.0997110.2070540.423483

.

Fig. 11.11. The measure representation (left) and the RIFS simulation (right) of 
the complete genome of Buchnera sp. APS when K=8 

Based on the above matrix, the histogram approximation of the gener-
ated measure of Buchnera sp. APS using the RIFS model is shown on the 
right in Fig. 11.11. This is quite similar to the figure on the left Fig. 11.11. 
In order to clarify how close the simulation measure is to the original 
measure representation, we convert the measure to its walk representation. 

If K
j jt 4,...,2,1, =  is the histogram of a measure and tave is its average, 

then we define K
ave

j

i
ij jttT 4,...,2,1),(

1

=−=∑
=

 as the walk representa-

tion of the measure. In Fig. 11.12, we show the walk representations of the 
measures in Fig. 11.11. From Fig. 11.12, it is seen that the difference be-
tween the two walk representations is very small. We simulated the meas-
ure representations of the complete genomes of many organisms using the 
RIFS model (Anh et al., 2002). We found that RIFS is a good model to 
simulate the measure representation of organisms. From above, once the 
matrix of probabilities is determined, the RIFS model is obtained. Hence 
the matrix of probabilities obtained from the RIFS model can be used to 
represent the measure of the complete genome of an organism. Different 
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organisms can be compared using their matrices of probabilities obtained 
from the RIFS model. 

Fig. 11.12. The walk representations of the measures in Fig. 11.11 

11.6.2 Measure Representation of Linked Protein Sequences 

Measure representation  

The concept of linked protein sequences was given in Subsection 11.4.3. 
We call any string made of K letters from the alphabet {A, C, D, E, F, G, 
H, I, K, L, M, N, P, Q, R, S, T, V, W, Y} that corresponds to twenty kinds 
of amino acids a K-string. For a given K, there are in total 20K different K-
strings. In order to count the number of each kind of K-strings in a given 
protein sequence, 20K counters are needed. We divide the interval [0,1] 
into 20K disjoint subintervals, and use each subinterval to represent a 
counter. Letting Kssss ...21= , where ∈is {A, C, D, E, F, G, H, I, K, L, 

M, N, P, Q, R, S, T, V, W, Y}, i = 1, 2, …, K be a substring with length K,
we define 

,
20

)(
1
∑

=
=

K

i
i

i
left

x
sx (11.23)
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where ix  is one of the integer value from 0 to 19 corresponding to =is
A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y respectively (simi-
lar to Equation (11.19)), and 

Kleftright sxsx
20

1
)()( +=

.
(11.24)

We then use the subinterval )](),([ sxsx rightleft to represent the substring 

s. Let )(sN K be the number of times that a substring s with length K ap-
pears in the amino acid sequence. If the total number of K-strings appear-
ing in the amino acid sequence is denoted by NK(total), we define 

)(/)()( totalNsNsF KKK = (11.25)

to be the frequency of substring s. It follows that ∑ =
}{

1)(
s K sF . Now 

we can define a measure Kµ  on [0,1] by dxxYxd KK )()( =µ , where 

),(20)( sFxY K
K

K =  where )](),([ sxsxx rightleft∈ (11.26)

It is easy to see ∫ =
1

0

1)(xd Kµ  and )()])(),(([ sFsxsx KrightleftK =µ . We 

call Kµ  the measure representation of an amino acid sequence or a pro-
tein corresponding to the given K.

Fig. 11.13. Histograms of substrings with lengths K=1 and K=4 in the linked pro-
tein sequence from the complete genome of Buchnera sp. APS 
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If we consider linked protein sequences, we also call Kµ  the measure 
representation of the linked protein sequence of the organism correspond-
ing to the given K. As an example, the histogram of substrings in the 
linked protein sequence of Buchnera sp. APS for K = 1 and K = 4 are 
given in Fig. 11.13. 

For simplicity of notation, the index K is dropped in FK(s), etc., from 
now on, where its meaning is clear. We can order all the F(s) in the in-
creasing order of xl(s). We then obtain a sequence of real numbers consist-
ing of 20K elements, which we denote as F(t), t = 1, 2 ,..., 20K.

Remark: The ordering of 20 letters in the definition of the measure fol-
lows the natural dictionary ordering of K-strings in the one-dimensional 
space. Different orderings of 20 letters give almost the same multifractal 
spectrum and Dq curve when the absolute value of q is relatively small (re-
fer to the measure representation of the DNA sequence given above). 
Hence our results based on multifractal analysis are considered independ-
ent of the ordering. In a comparison of different organisms using this 
measure representation, once the ordering is given, it is fixed for all organ-
isms. 

Fig. 11.14. Dimension spectra of measure representation µ  of protein sequences 

of some Archae bacteria 
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Multifractal analysis 

In Yu et al., PRE (2003), multifractal analysis was performed on the meas-
ure representations of the linked protein sequences of a large number of 
complete genomes. From the values of the Dq (generalized dimensions) 
spectra and related Cq (analogous specific heat) curves, it is concluded that 
these protein sequences are not completely random sequences. For sub-
strings with length K = 5, the Dq spectra of all organisms studied are multi-
fractal-like and sufficiently smooth for the Cq curves to be meaningful. The 
Cq curves of all bacteria resemble a classical phase transition at a critical 
point. But the “analogous” phase transitions of higher organisms studied 
exhibit the shape of the double peaked specific heat function. 

Fig. 11.15. “Analogous” specific heat of measure representation µ of protein 

sequences of some organisms 

Fig. 11.16. The neighbor-joining phylogenetic tree based on the correlation dis-
tance using Fd(s) with K = 5 
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Correlation distance and phylogenetic tree 

If s' is one of the 20 letters, we denote by P(s') the frequency of letter s' in 
the linked protein sequence. Then for any K-substring Kssss ...21= , where 

∈is {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, 

Y}, ,,...,2,1 Ki =
we define 

)()...()()( 21 KsPsPsPsF =′ .

We next define 

)()()( sFsFsF d ′−= . (11.27)

For all 20K different K-strings, we can also order the Fd(s) sequence ac-
cording to the dictionary order of s.

From the point of view of Qi et al., (2004), we need to subtract the 
background structure from the sequence {F(s)} in order to get a more sat-
isfactory evolutionary tree. Qi et al., (2004) used a Markov model to do 
this. Here we use the frequencies of the 20 kinds of amino acids appearing 
in the linked protein sequence. By the nature of its generation, this prob-
ability measure behaves as a multiplicative cascade and displays long
memory. Hence, subtracting out the fractal background F' (s) as described 
above has the effect of reducing long memory in the measure representa-
tion. Then, we can use the correlation distance based on the sequence 
{Fd(s)} to construct a phylogenetic tree of organisms (see Fig. 11.16). Fur-
ther details and a discussion on phylogenetic analysis can be found else-
where (Yu et al., 2003). 

11.6.3 Measure Representation of Protein Sequences Based on 
Detailed HP Model 

The fractal method has been used to study the protein backbone (Dewey 
1993}, the accessible surface of protein (Dewey, 1993; Pfiefer et al., 1985; 
Fedorov et al., 1993; and Lewis and Rees, 1985) and protein potential en-
ergy landscapes (Lidar et al., 1999). Multifractal analysis of solvent acces-
sibilities in proteins was undertaken in Balafas and Dewey (1995). The 
model used to fit the multifractal spectrum was also discussed (Balafas and 
Dewey, 1995). But the parameters derived in their multifractal analysis 
cannot be used to predict the structural classification of a protein from its 
amino acid sequence. 
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Based on the idea of DNA walk model and different mappings, a de-
coded walk model was proposed to study the correlation property of pro-
tein sequences (Pande et al., 1994) using “Bridge analysis” and Straint and 
Dewey (1995) using multifractal analysis. Deviations of the decoded walk 
from random behavior provide evidence of memory. 

Inspired by the idea of measure representation of DNA sequences (Yu et 
al., 2001a), we proposed a visual representation, i.e., a measure representa-
tion, of protein sequences based on the detailed HP model (Yu et al., 
2004). 

Through the map defined by Eq. 11.6 based on the detailed HP model, 
we can transform a protein sequence to a number sequence 

LaaasX ...)( 21= , where ia  is a letter in the alphabet }3,2,1,0{ . Using 

the same idea as that for DNA sequences in the previous Subsection, we 
can define the measure representation Kµ of K-strings in the sequence 

LaaasX ...)( 21= . (We call Kµ  the measure representation of the given 

protein sequence based on the detailed HP model. As an example, the 
original measure representation based on the detailed HP model of protein 
1DAB (Protein Data Bank ID) is shown in the left figure of Fig. 11.17.  

IFS model to simulate the measure representation of protein 
sequences based on the detailed HP model 

In order to simulate the measure representation based on the detailed HP 
model of a protein sequence using IFS or RIFS model, we see that it is 
natural to choose N = 4 and 

1 2 3 4( ) / 4, ( ) / 4 1/ 4, ( ) / 4 1/ 2, ( ) / 4 3 / 4w x x w x x w x x w x x= = + = + = +

in the IFS model. For a given measure representation of a protein se-
quence, we obtain the estimated values of the probabilities 4321 ,,, pppp
in the IFS model by solving the optimization problem. Based on the esti-
mated values of the probabilities, we can use the chaos game to generate a 
histogram approximation of the invariant measure of the IFS which we can 
compare with the real measure representation of the protein sequence. An 
IFS simulation of protein P.69 Pertactin (Protein Data Bank ID: 1DAB) is 
shown in the right figure of Fig. 11.17. In order to clarify how close the 
simulation measure is to the original measure representation, we convert 

the measure to its walk representation. If K
j jt 4,...,2,1, = is the histogram 

of a measure and tave is its average, then we define 
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K
ave

j

i
ij jttT 4,...,2,1),(

1

=−=∑
=

as the walk representation of the meas-

ure. In Fig. 11.18, we show the walk representations of the measures in 
Fig. 11.17. From Fig. 11.18, it is seen that the difference between the two 
walk representations is very small. 

   
Fig. 11.17. The measure representation (left) and the IFS simulation (right) of pro-
tein P.69 Pertactin (PDB ID: 1DAB) 

Fig. 11.18. The walk representations of the measures in Fig. 11.17
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Table 11.4. The estimated parameters in the IFS model of all 32 proteins 
selected. 

Class PDB ID 1p 2p 3p 4p

α

1AVC 
1B89 
1BJ5 
1HO8 
1IAL 
1QSA 
2BCT 
5EAS 

0.433053 
0.434701 
0.395675 
0.425220 
0.454049 
0.429905 
0.479382 
0.438919 

0.057476 
0.090537 
0.171289 
0.116664 
0.145905 
0.095604 
0.051937 
0.079522 

0.360621 
0.355757 
0.263892 
0.324997 
0.279686 
0.366038 
0.343780 
0.386794 

0.148850 
0.119005 
0.169145 
0.133119 
0.120360 
0.108453 
0.124902 
0.094765 

β

1B9S 
1DAB 
1EUT 
1FNF 
1JX5 
1MAL 

0.374272 
0.443784 
0.404940 
0.392416 
0.418789 
0.369149 

0.055143 
0.082010 
0.086955 
0.124496 
0.121671 
0.074231 

0.447158 
0.399380 
0.409295 
0.393389 
0.364252 
0.483407 

0.123429 
0.074825 
0.098810 
0.089700 
0.095288 
0.073214 

βα +

1B90 
1BBU 
1BYT 
1CLC 
1E7U 

0.412281 
0.408854 
0.419483 
0.411955 
0.407123 

0.069013 
0.203032 
0.124814 
0.089417 
0.186941 

0.413590 
0.238907 
0.313159 
0.393040 
0.242776 

0.105117 
0.149207 
0.142543 
0.105588 
0.163161 

βα /

1A8I 
1ACJ 
1AOV 
1BFD 
1CRL 

0.435450 
0.437285 
0.378102 
0.503850 
0.445648 

0.100694 
0.087811 
0.092808 
0.103505 
0.061138 

0.329504 
0.359227 
0.390054 
0.303115 
0.432773 

0.134352 
0.115677 
0.139036 
0.089530 
0.060441 

Others 

1DPI 
1EFG 
1EPS 
1F1O 
1KVP 
1PMD 
1TPT 
4ACE 

0.434653 
0.463732 
0.455629 
0.438389 
0.409277 
0.384736 
0.462826 
0.437279 

0.174507 
0.090136 
0.080760 
0.119861 
0.105865 
0.133984 
0.143851 
0.087855 

0.229232 
0.318268 
0.366760 
0.290525 
0.364443 
0.386281 
0.272910 
0.359186 

0.161609 
0.127863 
0.096850 
0.151225 
0.120415 
0.094999 
0.120413 
0.115681 

It is well known that statistical methods and nonlinear scale methods re-
quire large data samples. The methods introduced in this Subsection can 
only be used on long protein sequences (corresponding to large proteins). 
The amino acid sequence of 32 large proteins is selected from the RCSB 
Protein Data Bank (PDB). These 32 proteins belong to five structure 
classes (Russell, 2000) according to their secondary structures: α, β, α + β
(α, β alternate), α  / β (α, β segregate), and other (no α and no β) proteins. 
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First, we convert the amino acid sequences of these proteins into their 
measure representations with K = 5. If K is too small, there are not enough 
combinations of letters from the set {0, 1, 2, 3}, yielding no statistical 
sense. But if K is too large, the frequencies of most substrings are zero, 
yielding no biological information from the measure representation. Con-
sidering the length of the selected proteins, which range from 350 to 1,000, 
we have found it is suitable to choose K = 5. 

We simulated the measure representations of 32 proteins using the IFS 
and RIFS models (Yu et al., 2004). We found that IFS is a good model to 
simulate the measure representation based on the detailed HP model of 
protein. We also found that the IFS model is better than the RIFS model in 
simulating the measure representation of protein sequences. The estimated 
parameters in the IFS model of 32 proteins are given in Table 11.4.  

Once the probabilities are determined, the IFS model can be used for the 
measure representation of the protein sequence. From Table 11.4, we find 
the probability p3 (which corresponds to the uncharged polar property) can 
be used to distinguish proteins from classes α and β (the values of p3 of 
proteins in class α are less than those of proteins in class β), and the prob-
ability p1 (which corresponds to the non-polar property) can be used to dis-
tinguish proteins from classes α + β and α  / β (the values of p1 for pro-
teins in class α  / β are less than those of proteins in class α + β ). Hence 
we believe that the non-polar residues and uncharged residues play a more 
important role than other kinds of residues in the protein folding process. 
This information is useful for the prediction of protein structure. 
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12.1 Introduction 

Microarray deals with DNA samples. It is a device that cotains an array of 
microscopic glass slides coated with DNA molecules. Of late, it has 
evolved into hign density DNA chip. Using this microarray, expressions of 
genes are measured using the laser spectroscopic technique. We will not go 
into the details of the microarrray technology. Rather, we will go into de-
tails of analysis of measured data for gene expression.  

What do we get out of this analysis of minute DNA samples? How reli-
able is the information extracted from this analysis? These are the puzzling 
questions that concern everyone involved in biology and bioinformatics. 

In this chapter, we will discuss several analytical techniques and tools 
used in image analysis of microarray for data extraction and data analysis 
for pattern discovery. 

Image analysis is very crucial to analysis of measured data as it gives 
details of particular elements of the array. Several techniques and tools are 
available for analysis of measued data to gain insight into any pattern that 
emerges. The most popular among them are the cluster analysis, temporal 
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expression profile analysis, and gene regulatory analysis. We will discusss 
about them in detail. 

12.2 Microarray Technology for Genome Expression 
Study 

Important insights into gene function can be gained by gene expression 
profiling. Gene expression profiling is the process of determining when 
and where particular genes are expressed. For example, some genes are 
turned on (expressed) or turned off (repressed) when there is a change in 
external conditions or stimuli. In multicellular organisms, gene expressions 
in different cell types are different during different developmental stages in 
life. Even within the same cell type, gene expressions are dependent on the 
cell cycle. DNA mutation may alter the expressions of certain genes, 
which causes illnesses such as abnormal tumor growths or cancers. Fur-
thermore, the expression of one gene is often regulated by the expression 
of another gene. A detailed analysis of all this information will provide an 
understanding the networking of different genes and their functional roles. 

Traditional techniques of gene expression study are laborious and slow 
(Sambrook and Russell, 2001). In the past, genes and their expression pro-
files were studied one at a time. Although some of these techniques have 
very good sensitivity and serve certain applications, they are inadequate 
for the holistic study of the complete genome of an organism since the ex-
pressions of different genes are generally interdependent.  

Microarray technology, which allows massively parallel, high through-
put profiling of gene expression in a single hybridization experiment, has 
recently emerged as a powerful tool for genetic research (Schena et 
al.,1995; Moore, 2001; and Lockhart and Winzeler, 2000). The technique 
allows the simultaneous study of tens of thousands (for example, standard 
high density arrays currently have around 30,000 to 40,000 cDNAs spotted 
on each array) of different DNA nucleotide sequences on a single micro-
scopic glass slide. Besides the enormous scientific potential of cDNA mi-
croarrays in the fundamental study of gene expressions, gene regulations, 
and interactions, they also have very important applications in pharmaceu-
tical and clinical research. For example, by comparing gene expressions in 
normal and diseased cells, microarrays can be used to identify disease 
genes for therapeutic drugs or for assessing the effect of a treatment. 

In a microarray experiment, two samples of cRNA are reverse tran-
scribed from mRNA purified from cellular contents are labeled with dif-
ferent fluorescent dyes (usually Cy3 and Cy5, which have different emis-
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sion wavelengths) to constitute the cDNA targets. The two cDNA targets 
are then hybridized onto a cDNA microarray. The microarray holds hun-
dreds or thousands of spots, each of which contains a known different 
DNA sequence called probe. These spots are printed onto a glass slide by a 
robotic arrayer. The DNA in the spots is bonded to the glass to keep it 
from washing off during the hybridization reaction. If a target contains a 
cDNA whose sequence is complementary to the DNA probe on a given 
spot, that cDNA will hybridize to the spot, where it will be detectable by 
its fluorescence. Spots with more bound targets will have more fluorescent 
dyes, and will therefore fluoresce more intensely.  

Once the cDNA targets have been hybridized to the array and any loose 
target has been washed off, the array is scanned by a laser scanner to de-
termine how much of each target is bound to each spot. The hybridized 
microarray is scanned for the red wavelength (at approximately 635 nm for 
the cyanine5, on Cy5 dye) and the green wavelength (at approximately 530 
nm for the cyanine3, on Cy3 dye); this produces two sets of images typi-
cally in 16 bits Tiff format. The ratio of the two fluorescence intensities at 
each spot indicates the relative abundance of the corresponding DNA se-
quence in the two cDNA samples that are hybridized to the DNA sequence 
on the spot. By examining the expression ratio of each spot in the Cy3 and 
Cy5 images, gene expression study can be studied. Fig. 12.1 shows a 
schematic of the cDNA microarray technique and Fig. 12.2 outlines the 
steps for performing a cDNA microarray experiment. 

Fig. 12.1. A schematic of the cDNA microarray technique 
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The large amount of data in the microarray images necessitates the use 
of computer analysis. In general, analysis of microarray data can be cate-
gorized into two parts: image analysis for data extraction and data analysis 
on the gene expression ratio (Liew et al., 2003b). The ultimate goal in im-
age analysis is to automatically quantify each spot giving information 
about the relative extent of hybridization of the two cDNA samples, a 
process known as quantitation. However, automatic and reliable analysis 
of microarray images has proved to be difficult due to the poor contrast be-
tween spots and background, and the many contaminations/artifacts arising 
from the hybridization procedures, such as irregular spot shape and size, 
dust on the slide, large intensity variation within the spots and the back-
ground, and nonspecific hybridization. 

Fig. 12.2. The steps involved in a cDNA microarray experiment 

12.3 Image Analysis for Data Extraction 

The spots on a microarray are printed in a regular pattern: an array image 
will typically contain NxM blocks, where each block will contain pxq
spots. The NxM blocks on each array are printed simultaneously by repeat-
edly spotting the slide surface with NxM print tips. The relative placement 
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of adjacent blocks is therefore determined by the spacing between adjacent 
print tips. Adjacent spots inside each block are separated during printing 
by slightly offsetting the print tips after each spotting. These spots must be 
individually segmented from the background to compute the expression ra-
tio. 

Although precise robotic arrayers are used to ensure precise positioning 
during printing, variations in spot positions cannot be totally avoided. The 
positional variations become significant when very high density printing is 
carried out, since the size of each spot is in the µm range. Differences in 
the size of the transferred drops on the print tips also cause variations in 
spot size and shape. The hybridization process further introduces variabil-
ity, such as different labeling efficiencies for different DNA sequences, 
and specific and non-specific hybridization on the spots and background. 
The post-hybridized slide treatments, such as the washing off of the un-
bounded cDNA targets with solvents and slide dehydration, also create im-
age artifacts. Finally, the imaging process could give rise to geometric dis-
tortion, blurring, intensity saturation, and poor contrast in the image. All 
these factors make the microarray image highly variable and complicate 
the spot segmentation task. 

Many software packages, both free and commercial, have been devel-
oped for microarray image analysis, some of these software packages are 
GenePix (Axon, 2001), ScanAlyze (Eisen, 1999), QuantArray (Packard, 
Yale and Bohnert, 2001), Dapple (Buhler et al., 2000), Spot (Buckley, 
2002), DeArray (Chen et al., 1997), Matarray (Wang et al., 2001), and 
GeneIcon (Liew et al., 2003a). A typical spot segmentation task usually 
involves the following steps: (1) preprocess the pair of microarray images, 
(2) identify the location of all blocks on the microarray image, (3) generate 
the grid within each block that subdivides the block into pxq subregions, 
each containing at most one spot, and (4) segment the spot, if any, in each 
subregion. We give a brief account of each of the steps in our image analy-
sis algorithm (GeneIcon) below. 

12.3.1 Image Preprocessing 

The input microarray images consist of a pair of 16-bit images in TIFF 
format, laser scanned from a microarray slide, using two different wave-
lengths. For computational efficiency, a spot segmentation algorithm usu-
ally operates on a single image. Let X denotes the composite image ob-
tained from R (Cy5) and G (Cy3); then, one possible way to compute X is  



358 Alan W.-C. Liew et al. 

⎥
⎥

⎦

⎥

⎢
⎢

⎣

⎢

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= '

'

'
'

)(

)(
*5.0 R

Rmedian

Gmedian
GX ,

where GG =' , RR =' , and ⎣ ⎦  denotes rounding to the nearest integer 
in the range [0, 255]. 

Fig. 12.3. Segmentation of a microarray image into blocks 
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12.3.2 Block Segmentation 

The blocks in a microarray image are arranged in a very rigid pattern due 
to the printing process, and each block in a microarray image is surrounded 
by regions void of any spots. Hence, an effective way for block segmenta-
tion is through an analysis of the vertical and horizontal image projection 
profiles. In our image analysis algorithm, the projection profiles are ob-
tained from an adaptively binarized image. By performing analysis on the 
projection profiles, accurate block segmentation can be achieved. Figure 
12.3 shows an example of block segmentation of a microarray image. 

 (a) (b) 

 (c) (d)

Fig. 12.4. (a) A block of spots from a microarray image shown as an RGB color 
image, where the green component is given by Cy3, the red component given by 
Cy5 and the blue component is set to zero. (b) The corresponding composite im-
age. (c) The guide spots found. (d) Grid generated from the guide spot image 
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12.3.3 Automatic Gridding 

Our gridding strategy consists of first locating the good quality spots (we 
called them guide spots), and then inferring the geometry of the grid from 
these spots. While gridding, we also correct for any global rotation, and 
remove any erroneous spots that do not fit the estimated grid geometry. In 
order to account for the variable background and spot intensity, a novel 
adaptive thresholding procedure and morphological processing are used to 
detect the guide spots. After the guide spots are found, global rotation in 
the image is compensated for, and the correct grid parameters are esti-
mated based on the spatial arrangement of the guide spots. Figure 12.4 
shows an example of automatic gridding of a block in a microarray image. 

12.3.4 Spot Extraction 

Spot segmentation is performed in each of the subregions defined by the 
grid. The segmentation involves finding a circle that separates the spot, if 
any, from the background. The spot segmentation task consists of three 
steps: (1) background equalization for intensity variation in the subregion, 
(2) statistical intensity modeling and optimum thresholding of the subre-
gion, and (3) finding the best-fit circle that segments the spot. 

If a guide spot is present, a spot is present. Otherwise, a spot is assumed 
present if the ratio of the median intensity between the tentative spot pixels 
and the background pixels is larger than a preset value. When a spot is pre-
sent, the intensity distribution of the pixels within the subregion is modeled 
using a 2-class Gaussian Mixture Model. The pixel intensity within the 
subregion may be transformed if necessary, i.e., log transformed if the in-
tensity is lognormally distributed, prior to the Gaussian Mixture modeling. 
The optimum threshold can then be computed. Once the subregion is 
thresholded and segmented, a best-fit circle is computed for the final spot 
segmentation. Although the actual spot shape usually deviates from strictly 
circular, we constrain the spot shape to be circular to ensure that the spot 
extraction procedure is robust to poor quality segmentation while provid-
ing a reasonable fit to good quality spots. Nevertheless, for good quality 
spots, adaptive shape segmentation can be easily adopted. Figure 12.5 pre-
sents some spot segmentation examples for blocks of different spot densi-
ties and qualities from different microarray images (the contrast is en-
hanced for visual display). 
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12.3.5 Background Correction, Data Normalization and 
Filtering, and Missing Value Estimation 

Once the spots in a microarray image are extracted, the intensity value of 
each spot can be obtained and the log ratio, i.e., GRM /log2= , which in-
dicates the differential expression of the two DNA samples (the red and the 
green dyes), can be computed. However, due to contaminations and ex-
perimental errors, some preprocessing of the raw intensity value is needed 
before the expression data can be subjected to further analysis. The pre-
processing steps usually involve (i) background correction, (ii) data nor-
malization, (iii) data filtering, and/or (iv) missing values estimation. 

Fig. 12.5. cDNA Microarray spot segmentation results 

The motivation for background correction is the belief that a spot’s 
measured intensity includes a contribution not due to the specific hybridi-
zation of the target to the probe. This could arise from non-specific hy-
bridization and stray fluorescence emitted from other chemicals on the 
glass slide. Such a contribution should be removed from the spot’s meas-
ured intensity to obtain a more accurate quantification of hybridization. 
Different approaches, ranging from simple subtraction of local background 
intensity (Eisen, 1999 and Axon, 2001) to sophisticated statistical correc-
tion have been proposed (Kooperberg et al., 2002). 

The purpose of normalization is to adjust for any bias that arises from 
variation in the microarray process rather than from biological differences 
between the RNA samples. Position variation on a slide may arise due to 
differences between the print tips on the arrayer, variation over the course 
of the print run, or nonuniformity in the hybridization. Differences be-
tween slides may arise from differences in ambient conditions when the 
slides were prepared. Another common variation is the red-green bias due 
to the differences between the labeling efficiencies, the scanning properties 
of the two fluors, and the scanner settings. It is necessary to normalize the 
spot intensities before any subsequent analysis is carried out. 
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The most widely used within-slide normalization method assumes that 
the red-green bias is constant on the log scale across the slide. The log ra-
tios are corrected by subtracting a constant c to get the normalized values 

cGRM norm −= )/(log 2 . The global constant c is usually estimated from the 
mean or the median log-ratios value over a subset of the genes assumed to 
be not differentially expressed (Chen et al., 1997 and Wolfinger et al., 
2001). However, the imbalance in the red and green intensities is usually 
not constant across the spots within and between slides, and can vary ac-
cording to overall spot intensity, location on the slide, slide origin, and, 
possibly, other variables. Other more sophisticated normalization methods 
are available to account for these dependencies (Yang et al., 2002). Addi-
tionally, housekeeping genes can be used as control spots for normaliza-
tion. 

Not all data extracted from a microarray experiment are useful. For ex-
ample, some temporal expression data might have missing values at many 
time points. Some expression ratios might be unreliable due to the poor 
quality of the spots. Thus, the expression data are usually filtered prior to 
subsequent data analysis stage (Eisen, 1999, and Axon, 2001). 

Gene expression microarray experiments usually suffered from the 
missing values problem. Missing values occur due to various reasons, in-
cluding artifacts on the microarray image, insufficient resolution, image 
corruption, etc. The unreliable spots on the microarray image are usually 
manually flagged and excluded from subsequent analysis, resulting in the 
missing of data at those locations. The existence of missing values has im-
portant implications for subsequent data analysis. For example, the inabil-
ity of many clustering algorithms to process the missing values means that 
profiles containing missing values are often discarded. However, instead of 
ignoring gene expression profiles containing missing values (thus throwing 
away useful information), such missing values can often be estimated 
based on available knowledge and assumptions about the data. 

Reliable estimation of missing values is important. If an erroneous miss-
ing value imputation is performed, gene expressions containing a high 
number of missing values can be assigned to the wrong cluster in subse-
quent cluster analysis. The most common methods to deal with missing 
values are simply replacements by zero or by the average of the expression 
profile. Such estimation techniques, however, make very crude use of the 
available knowledge within the data. Other more advanced techniques, 
such as the K-nearest neighbor method (KNNimpute) or the singular value 
decomposition method (SVDimpute), have recently been proposed (Troy-
anskaya et al., 2001). 



12 Microarray Data Analysis 363 

Intuitively, if we can incorporate more available information about the 
missing values into their estimation, we can obtain better estimates. We 
have recently proposed a missing value imputation technique based on this 
idea (Gan et al., 2004). Let the gene expression data be tabulated as a ma-
trix A of size MxN, where M denotes the M genes being studied and N de-
notes the N arrays produced under N different experimental conditions. If 
we perform a singular value decomposition on matrix A, we get 

T
NNNMMMNM VUA ×××× = Σ

Let { }NML ,min= , matrix VT now contains L eigengenes, and matrix U
contain L eigenarrays. Unlike SVDimpute, our method makes use of infor-
mation in both the eigengenes and eigenarrays for missing value imputa-
tion. Moreover, we allow uncertainties in the estimated values by modeling 
them as convex sets, and use the projection onto convex sets (POCS) algo-
rithm to iteratively refine the estimated values. Using the new algorithm, 
we were able to obtain a normalized root mean squared error reduction of 
between 16% and 20% more than KNNimpute and SVDimpute on the gene 
expression datasets of the yeast cell/cycle from Spellman et al. 
(http://cellcycle-www.stanford.edu; Spellman et al., 1998). 

12.4 Data Analysis for Pattern Discovery 

Once expression data isobtained from the microarray images, the informa-
tion embedded in the data needs to be discovered and analyzed. In gene 
expression study, the data is arranged in matrix form, where the rows cor-
respond to genes and the columns correspond to the genes’ responses un-
der different experimental conditions. One can examine the expression 
profiles of different genes by comparing rows in the expression matrix, or 
study the responses of genes to different experimental conditions by exam-
ining the columns of the expression matrix.  

12.4.1 Cluster Analysis 

A standard tool in gene expression data analysis is cluster analysis. Cluster 
analysis is a fundamental technique in exploratory data analysis and pat-
tern discovery. It aims at finding groups in a given dataset such that objects 
in the same group are similar to each other while objects in different 
groups are dissimilar. Since genes with related functions are expected to 
have similar expression patterns, clustering of genes may suggest possible 
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roles for genes with unknown functions based on the known functions of 
some other genes that are placed in the same cluster. Many clustering algo-
rithms, for example, K-means, Self-Organizing Maps (SOMs), Hierarchi-
cal clustering, Self-Organizing Tree Algorithm, principal components 
analysis (PCA), and Multidimensional Scaling, have been applied to the 
study of high-dimensional gene expression data (Brazma and Vilo, 2000; 
Alon et al, 1999; Perou et al., 1999; White et al., 1999; Yeung and Ruzzo, 
2001; Tang et al., 2002; Eisen, 1998; Tamayo et al., 1999; and Duda, 
2001). Clustering of gene expression data has been applied to the study of 
temporal expression of yeast genes in sporulation (Chu et al., 1998), the 
identification of gene regulatory networks (Chen and Filkov et al., 1999), 
and the study of cancer (Golub et al., 1999). 

Fig. 12.6. The binary hierarchical clustering framework. (a) Original gene expres-
sion data treated as one class. (b) The class split into two clusters, A and BC. (c) 
Cluster A cannot be split further, but cluster BC is split into two clusters, B and C. 
(d) Both cluster B and C cannot be split any more, and we have three clusters A, 
B, and C (See Clausi, 2002) 

Traditional clustering techniques can generally be classified into two 
categories, hierarchical and partitional. Hierarchical clustering transforms 
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a pairwise dissimilarity matrix of patterns into a sequence of nested parti-
tions, such as a dendrogram. Partitional clustering, on the other hand, per-
forms a partitions of patterns into K clusters, such that other patterns in a 
cluster are more similar to each other than to patterns in the clusters. Both 
categories of clustering algorithms have their merits and weaknesses and 
both have been used extensively in gene expression data study (see, for ex-
ample, the cluster analysis packages of Stanford Microarray Database: 
http://genome-www5.stanford.edu/MicroArray/SMD/restech.html). 

BHC Clustering 

We recently proposed a novel hierarchical partitioning framework that 
combines the features of both categories of algorithms, what we called the 
binary hierarchical clustering (BHC) (Szeto et al., 2003). In essence, our 
algorithm performs a successive binary subdivision of the data into inter-
estingly smaller partitions in a hierarchical manner, until any further split-
ting of a partition into two smaller partitions is insignificant. The hierar-
chical structure is manifested in the binary tree structure of the clustering 
result, where a parent node gives rise to two children nodes if the projec-
tion onto the optimal fisher discriminant axis satisfies a certain threshold. 
The partitioning behavior of our algorithm is incorporated in the cluster 
splitting process, where the fuzzy C-means clustering algorithm is used to 
split a parent cluster into two children clusters. The basic idea and major 
steps of our algorithm are illustrated in Figures 12.6 and 12.7. 

At each stage of the binary partitioning module of Fig. 12.7, the BHC 
algorithm uses the fuzzy C-means algorithm and the average linkage hier-
archical clustering algorithm to split the data into two classes, and then re-
fines and verifies the validity of the split by using the Fisher discriminant 
analysis. The main advantages of the BHC clustering algorithm are 
(Clausi, 2002): (1) the number of clusters can be estimated from the data 
directly, using a binary hierarchical framework and a mathematically well 
defined index; (2) no constraint about the number of samples in each clus-
ter is required; and (3) no prior assumption about the class distribution is 
needed.  

The binary hierarchical framework leads to a tree structure representa-
tion. The tree is constructed in such a way that adjacent clusters are more 
similar in terms of the Mahalanobis distance than non-adjacent clusters. By 
visualizing the clustering results using a tree structure, the relationships be-
tween clusters, the adjacency between clusters, and the variations within 
clusters can be observed easily. The tree structure visualization allows vis-
ual interpretation of the clustering result using additional biological 
knowledge, in a manner similar to that of hierarchical clustering. Figures 
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12.8 and 12.9 show some clustering results using the cell cycle expression 
data of yeast from Spellman et al. (http://cellcycle-www.stanford.edu; 
Spellman et al., 1998). The dataset contains expression profiles for 6,220 
genes under different experimental conditions. Genes with similar expres-
sion profiles are seen to cluster successfully into the same group. 

Fig. 12.7. Data flow diagram of the BHC clustering algorithm 
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 (a) (b) 

Fig. 12.8. BHC clustering result for the cdc15 experiment dataset. (a) Original 
gene expression data; (b) Expression data after BHC clustering 
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Fig. 12.9. BHC clustering result for the elutriation experiment dataset. (a) Original 
gene expression data; (b) Expression data after BHC clustering 

SSMCL Clustering 

In conventional clustering algorithms, if the number of prototypes is less 
than that of the natural clusters in the dataset, there must be at least one 
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prototype that wins patterns from more than two clusters, and this behavior 
is called one-prototype-take-multiple-clusters (OPTMC) (see Fig. 12.10a). 
The implications of not finding natural clusters are: (i) a natural cluster 
might be erroneously divided into two or more classes, or worse still, (ii) 
several natural clusters, or parts of them are erroneously grouped into one 
class. Such behaviors would lead to wrong inferences about the data. 

In view of the above shortcomings, we recently proposed a new parti-
tional clustering framework called Self-Splitting and Merging Competitive 
Learning Clustering (SSMCL) (Wu et al., 2004). The new algorithm is 
able to identify the natural clusters through the adoption of a new competi-
tive learning paradigm called the one-prototype-take-one-clusters 
(OPTOC) (Zhang and Liu, 2002). The OPTOC learning paradigm allows a 
cluster prototype to focus on just one natural cluster, while minimizing the 
competitions from other natural clusters (see Fig. 12.10b). The OPTOC 
behavior of a cluster prototype is achieved through the use of a dynamic 
neighborhood, which causes the prototype to eventually settle at the center 
of a natural cluster while ignoring competition from other clusters. 

 (a) (b) 

Fig. 12.10. Two learning methods: OPTMC versus OPTOC. (a) One prototype 
takes the center of three clusters (OPTMC). (b) One prototype takes one cluster 
(OPTOC) and ignores the other two clusters, (See Zhang and Liu, 2002) 

Since it is very difficult to estimate reliably the correct number of natu-
ral clusters in a complex high dimensional dataset, an over-clustering and 
merging strategy was used to estimate the number of distinct clusters in the 
dataset. The over-clustering and merging strategy can be viewed as a top-
down (divisive clustering), followed by a bottom-up (agglomerative clus-
tering), process. In the top-down step, loose clusters (as measured by their 
variances) are successively split into two clusters until a pre-specified 
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number of clusters, set to be larger than the true number of clusters in the 
data, is obtained. The over-clustering minimizes the chance of missing 
some natural clusters in the data. The merging step then attempts to merge 
similar clusters together, until finally all remaining clusters are distinct 
from each other. The merging scheme is based on the observation that a 
natural cluster should be expected to have a unimodal distribution. When 
two clusters are close to each other to the extent that their joint probability 
density function (pdf) is unimodal, these two clusters are merged into one. 
Together with the OPTOC framework, the over-clustering and merging 
framework allow a systematic estimation of the correct number of natural 
clusters in the dataset. 

Fig. 12.11. The clustering results for the yeast cell cycle data. The number of clus-
ters is set to 30 

The SSMCL algorithm was used to cluster the yeast cell cycle data 
downloaded from http://genomics.stanford.edu (Spellman et al., 1998). 
The data was first over-clustered into 30 clusters (see Fig. 12.11). Cluster 
merging is then performed on the result until finally 22 clusters are ob-
tained (see Fig. 12.12). Whereas similar clusters can be seen in Fig. 12.11, 
the 22 clusters in Fig. 12.12 are all visually distinct from each other. 
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Fig. 12.12. The final clustering results for the yeast cell cycle data after cluster 
merging. 22 distinct clusters are obtained 

12.4.2 Temporal Expression Profile Analysis and Gene 
Regulation 

Time series of whole genome expression data are a particularly valuable 
sources of information because they can describe dynamic biological proc-
esses such as the cell cycles or metabolic processes (DeRisi et al, 1997, 
and Spellman et al., 1998). They allow the determination of causal rela-
tionships between the expressions of different genes. Such causal relation-
ships allow the extraction of gene regulatory information, and ultimately 
lead to a better understanding of the complicated gene networking process 
within a cell. 

Several methods were proposed to extract the significant modes of 
variation from the large array of time series expression data. Holter et al., 
(2000) used Singular Value Decomposition (SVD) to extract the “charac-
teristic modes” of gene expression in the sporulation dataset (Chu et al., 
1998), a yeast cell cycle dataset (cdc15) (Spellman et al., 1998), and a se-
rum-treated human fibroblasts dataset (Iyer et al., 1999). They found that 
the first two modes capture 62%, 69%, and 72% of the variation for the 
cdc15, fibroblast, and sporulation datasets, respectively. They showed that 
the behavior of the widely disparate gene systems analyzed in their work is 
dominated by a small subset of the characteristic modes and that a linear 
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combination of just a few modes provides a good approximation of the be-
havior of the entire system in most cases. Alter et al. (2000) used a similar 
analysis (although with greater emphasis on normalizing and filtering the 
data) on two other cell cycle time series from Spellman et al. (1998), find-
ing approximately 40% of the variation in the top two eigengenes. In both 
datasets, the first two modes of the cell cycle time series are approximately 
sinusoidal and 90° out of phase. 

Independent Components Analysis (ICA) (Liebermeister, 2002) can be 
used to extract linear modes of gene expression. The statistically inde-
pendent components extracted by ICA were regarded as linear influences 
of unobserved variables and were termed expression modes. A linear 
model of gene expression was proposed where the sample expression pro-
files are determined by a linear combination of expression modes. The ICA 
model assumes that the different modes exert independent influences on 
the genes. In contrast, the assumption of independence between principal 
modes is not made in the SVD method. Instead, SVD tries to find compo-
nents that maximally explain the variation in the data. Both temporal ex-
pression data (Yeast cell cycle data from Spellman at al., 1998) and non-
temporal B-cell Lymphoma data (Alizadeh et al., 2000) were analyzed by 
Liebermeister. 

The temporal nature of time series gene expression data was explicitly 
modeled by Dewey and Galas (2001) using a dynamic model. They mod-
eled the entire set of time series gene expression data using a first order 
Markov model, which is equivalent to a first order autoregressive (AR) 
model. SVD was used to solve for the Markov transition matrix (which 
specifies the transition of the data from one time step to another time step) 
in the resulting matrix equation. By incorporating additional terms into the 
first order equation, they showed that some nonlinearity can be included 
into the linear dynamic model. The expression profiles for the diauxic shift 
(DeRisi et al., 1997) and for the cell cycle data (Spellman et al., 1998) 
were analyzed. The construction of a genetic network consisting of “dy-
namic classes” based on the transition matrix was also demonstrated. 

All the methods mentioned above analyze the gene expression data as a 
whole, and attempt to summarize the dataset by a few dominant compo-
nents. The characteristic of each gene is then obtained by projecting its ex-
pression profile onto the dominant components. The dominant components 
can be viewed as the “summary statistics” of the entire dataset. These 
methods can therefore be considered global in this sense. 

Another class of algorithms attempt to perform pairwise comparison of 
gene expressions to identify pairs of genes from the set of gene expression 
profiles that have direct regulatory relationships. Such a comparison is lo-
cal, in the sense that no “summary statistics” of the entire dataset is used in 
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the comparison. Algorithms that perform such pairwise analysis for ex-
tracting regulatory information from time series; include microarray data 
of the simple correlation analysis method (Eisen et al., 1998), the edge de-
tection method (Eisen M.B. et al., 1998), the event method (Kwon et al., 
2003), and the spectral component correlation method (Yeung L.K. et al., 
2004). 

Among the various pairwise comparison approaches, the correlation-
based method is perhaps the most popular one. This method determines 
whether or not two genes have a regulatory relationship by checking the 
global similarity between their expression profiles using the Pearson corre-
lation measure. However, it does not take into account the fact that there is 
often a time delay before the regulator gene product can exert its influence 
on the target gene. Such a time delay can significantly degrade the per-
formance of the method. The correlation method also strongly favors 
global similarity over more localized similarities arising from conditional 
regulatory relationships. 

The edge detection method and the event-based method are designed 
specifically to overcome the shortcomings of the correlation-based analy-
sis. The edge detection method scans through each gene expression curve 
to determine where major changes in expression levels (edges) occur. To 
produce a score, the edge detection method sums up the number of edges 
in two gene expression curves that share the same direction and are within 
reasonable distances of each other. Gene pairs that are likely to have an ac-
tivation relationship would give high scores. Similar to the edge method, 
the event method also examines the slope of the expression profile at each 
time interval. Instead of deriving a similarity score directly from the slope, 
the event method associates an event with each slope. Depending on the 
slope value, the algorithm marks each event as either rising (R), constant 
(C), or falling (F), resulting in a string of events for each expression pro-
file. A pairwise sequence alignment of the event strings is then performed 
to obtain a numerical score that reflects the regulatory relationship between 
two genes. 

If the expression of gene A varies periodically at constant frequency, we 
expect the expression of gene B to more or less at the same frequency. 
This frequency of variation, however, may not be easily seen from the two 
time series expression profiles due to noise and other factors. In addition, if 
gene B is under the influence of both gene A and gene C (“two-regulating-
one” situation), and the expression profiles of these influencing genes vary 
at different frequencies, then the relationship between gene A and gene B 
may not be easily seen from their time series profiles. This would cause 
problems for correlation-based similarity comparison, as well as the edge 
detection method and the event-based method. 
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A spectral component correlation approach (Yeung et al., 2003) is pro-
posed to measure the correlation between time series expression data, and 
use the results to infer to potential regulatory relationships between genes. 
The technique summarizes the essential features of an expression pattern 
by means of a frequency spectrum estimated by autoregressive modeling 
(Marple, 1987). Specifically, the pattern is decomposed into a set of 
damped sinusoids of different frequencies so that each sinusoid can be 
considered separately during the analysis. We consider both types of tran-
scriptional regulation, activation and inhibition. In the activation process, 
the product of gene A affects the transcription process of gene B such that 
the production rate for gene B increases. On the other hand, the inhibition 
process involves gene A’s production decreasing the production of gene B. 

The idea behind our technique is to decompose a time series expression 
profile x[n] into a set of discrete time damped sinusoids of various fre-
quencies. Hence we model the sequence as 
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The parameters in this model, αi, σi, ωi, and φi (i = 1, 2, 3, … M), are the 
amplitude, damping factor, normalized frequency and phase angle of com-
ponent i., respectively The correlation of x[n] with another sequence y[n]
can then be reformulated as a sum of scaled componentwise correlations, 
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where ○ denotes the correlation operation, and each term with the letter E
represents either total energy of a sequence or energy of a particular com-
ponent. This equation shows how a correlation of two sequences can be 
separated into a set of scaled componentwise correlations between each 
spectral component. Such componentwise correlations may provide more 
insights into the regulatory relationship. For instance, for the “two-
regulating-one” situation, the correlation between the expression profiles 
of gene A and gene B may not be strong enough to suggest their relation-
ship due to the presence of spectral components in gene B induced by gene 
C. However, the spectral components of gene B due to gene A would ex-
hibit strong correlations to gene A’s expression profile. Therefore, these 
scaled componentwise correlations can be used instead as a more reliable 
measurement for the relationship between these genes.
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Fig. 12.13. (a) Known activation regulation involving genes YLR256W and 
YPR191W. (b) Known activation regulation involving genes YBR240C and 
YPL258C. In both (a) and (b), the top graphs show the gene expression profiles 
for the regulatory pairs, whilethe middle and bottom graphs show each of the ex-
pression profiles (with their corresponding lowest frequency components) indi-
vidually. (c) Frequency characteristics obtained from the AR modeling technique 
for the expression profiles of genes YLR256W and YPR191W. (d) Frequency 
characteristics obtained from the AR modeling technique for the expression pro-
files of genes YBR240C and YPL258C. The top, middle, and bottom graphs in 
both (c) and (d) show the magnitudes, phases, and damping factors of the esti-
mated frequency components for these expression profiles of these regulatory 
pairs, respectively 
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Fig. 12.14. (a) Known activation regulation involving genes YAL040C and 
YER111C. The dominant frequency components for these two genes are plotted in 
the middle and bottom graphs. Although they both strongly oscillate at a fre-
quency of about 0.76 radians per second, the time lag, together with other un-
matched components, makes them have the low correlation value of -0.3885. (b) 
Known inhibition regulation involving genes YBR049C and YGR254W with cor-
relation coefficient -0.3226. The dominant frequency components for these gene 
pairs are plotted in the middle and bottom graphs. (c) Frequency characteristics for 
the regulatory gene pair YAL040C and YER111C. The dominant frequencies for 
these two profiles are 0.7248 radians per second and 0.8066 radians per second, 
respectively. (d) Frequency characteristics for the regulatory gene pair YBR049C 
and YGR254W. The dominant frequencies are 0.6395 radians per second for the 
first gene and 0.6271 radians per second for the second gene 

We use the spectral component correlation algorithm to analyze the al-
pha-synchronized yeast cell cycle dataset from Spellman et al. (1998). We 
were able to detect many regulatory pairs that were missed by the tradi-
tional correlation method due to weak correlation. Figure 12.13 shows two 
known activation pairs. The first one involves genes YLR256W and 
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YPR191W, and the second one involves genes YBR240C and YPL258C. 
As can be seen, the two genes in each regulatory pair do not have similar 
expression patterns, and their correlation coefficients are -0.1491 
and -0.1127 for the first and second pair, respectively. However, looking at 
the magnitude plots of the frequency components, we find that the time se-
ries profiles in each regulatory pair have very similar spectral characteris-
tics. Their low correlation coefficients are due to phase differences be-
tween closely matched frequency components. Figures 12.13(a) and 
12.14(b) plot for each pair the original expression patterns against their 
corresponding lowest frequency components. The low frequency compo-
nents identify the general variations for the profiles, and the time lags be-
tween the activators and activatees are clearly revealed. 

Table 12.1. Estimated frequency components for various expression profiles. 

a YAL040C YER111C 
i σi ωi αi φi σi ωi αi φi
1 -1.5993 0.0000 0.8670 3.1416 -0.0203 0.8066 0.5167 -2.5294 
2 -0.0047 0.7248 0.3177 -0.0226 -0.2575 1.2087 0.2854 -2.8483 
3 -0.0729 1.5913 0.1697 -2.3890 -0.3592 1.5766 0.1318 -2.6949 
4 -0.1313 3.0256 0.2068 0.6806 -0.0869 2.6468 0.1626 -0.0445 
5 -3.1281 3.1416 1.1970 0.0000 - - - - 

b YBR049C YGR254W 
i σi ωi αi φi σi ωi αi φi
1 -1.0018 0.0000 0.4460 0.0000 -1.4952 0.0000 0.0740 3.1416 
2 -0.0384 0.6395 0.2385 2.6440 -0.1026 0.6271 0.1378 -1.9743 
3 -0.0953 2.0240 0.0479 1.2530 -0.3656 1.6564 0.0821 2.2515 
4 -0.0677 3.1416 0.2381 3.1416 -0.1718 2.1764 0.1833 0.2889 
5 -0.3813 3.1416 0.0234 -3.1416 -0.0340 3.1416 0.1867 0.0000 

(a) Components for genes YAL040C and YER111C. (b) Components for 
genes YBR049C and YGR254W. Components with strong correlation 
are highlighted. 

For those regulations with strong oscillatory but time-shifted expression 
pairs, we can easily identify them by using only the spectral magnitude in-
formation, while ignoring the phase information. An example is given in 
Fig. 12.14(a), in which the expression profiles and spectrums for an activa-
tion pair involving genes YAL040C and YER111C are shown. These two 
patterns strongly oscillate at around 0.76 rad/s, but still have a relatively 
low correlation value of -0.3885 because of the time lag between them 
aother and unmatched components. The spectral magnitude plot (the top 
graph in Fig. 12.14(c)) shows that their dominant components are closely 
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matched with each other. It should be noted that the component for gene 
YAL040C with frequency of 3.1416 rad/s is not considered dominant due 
to its large decaying factor (see the bottom graph in Fig. 12.14(c)). An-
other example, an inhibition regulation, is shown in Fig. 12.14(b). Careful 
examination of the phase angles of the dominant components in these ex-
amples suggests that the activatee has a phase lag between 0 and 180o rela-
tive to the activator’s phase angle, whereas the inhibitee has a phase lead 
between 0 and 180o relative to the inhibitor’s phase angle. 

When comparing two expression patterns, it is often necessary to ne-
glect certain irrelevant components that may otherwise corrupt the correla-
tion between them. In fact, a large number of known regulations having 
weak correlations are caused by such irrelevant components. For example, 
the components at 0.7248 rad/s for gene YAL040C and 0.8066 rad/s for 
gene YER111C (see Table 12.6) clearly dominate over other components. 
The componentwise correlation with phase alignment using just this com-
ponent is 0.7665. Compared to the original correlation value of -0.3885, 
the componentwise correlation strongly suggests similarity between the 
two patterns. 

Table 12.2. Results for the two correlation methods applied to all 439 known 
regulatory pairs. 

a
Traditional 

Correlation < 0.5 
Traditional 

Correlation > 0.5 
Total 

Componentwise 
Correlation < 0.5 111 9 120 

Componentwise 
Correlation > 0.5 196* 27 223 

Total 307 36 343 

b
Traditional 

Correlation < -0.5 
Traditional 

Correlation > -0.5 
Total 

Componentwise  
Correlation < 0.5 

1 40 41 

Componentwise  
Correlation > 0.5 

4 51* 55 

Total 5 91 96 

(a) Statistics for the 343 activation pairs. (b) Statistics for the 96 inhibition pairs. 

When the componentwise correlation analysis is applied to all 439 
known regulations, the results indicated that 223 of the 343 activations and 
55 of the 96 inhibitions have their componentwise correlations score 
greater than 0.5 (see Table 12.1). We found that a large number of visually 
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dissimilar expression pairs have very similar dominant frequency compo-
nents. For example, among those 307 pairs having traditional correlation 
coefficients of less than 0.5, 196 of them have componentwise correlation 
coefficients greater than 0.5. Furthermore, 60 of the 196 pairs have their 
componentwise correlation coefficients greater than 0.9, and the expres-
sion patterns in each of these pairs strongly oscillate at almost identical 
frequencies. The spectral component correlation method allows the hidden 
componentwise relationships between two expression profiles, which are 
otherwise hidden in the traditional correlation method, to be revealed. 

Fig. 12.15. Two activation regulations with gene YPR120C as an activatee. (a) 
Activation regulation with gene YGR274C as an activator. (b) Activation regula-
tion with gene YAL040C as an activator. (c) Correlated frequency components for 
the first pair. (d) Correlated frequency components for the second pair 

For those regulations involving a single gene being simultaneously regu-
lated by two or more genes with different expression frequencies, it could 
be possible to identify them by checking for the existence of regulators’ 
frequencies in the expression profile of the gene being regulated. Figure 
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12.15 shows two known activation regulations with a common gene, 
YPR120C, as an activatee. The figure reveals that the first regulation has 
its expression profiles correlated at a frequency of about 1.48 rad/s, 
whereas the second regulation has its profiles correlated at a frequency of 
about 0.76 rad/s. We have also found eight “n-regulating-one” activation 
sets having the following properties: i) each set contains a common activa-
tee, and ii) the activatee has two different correlation frequencies for its 
regulators. These activation sets are summarized in Table 12.3. 

Table 12.3. Various activation regulation sets. Each set contains a common acti-
vatee that has two different correlated frequency components. 

Activator Activatee Traditional 
Correlation 

Componentwise 
correlation 

Activator 
Frequency 

Activatee 
Frequency 

YKL109W YGL167C 0.2877 0.9237 0.6505 0.6842 

YLR433C YGL167C 0.1980 0.5287 1.3502 1.6359 

YHR079C YJL034W -0.6594 0.9894 0.7063 0.7205 

YPL085W YJL034W 0.2717 0.6120 1.7581 1.9513 

YKL109W YLL041C 0.3792 0.9917 0.5339 0.5230 

YBL021C YLL041C 0.2586 0.9564 1.3748 1.3725 

YGL237C YLL041C -0.4687 0.8484 0.6456 0.5230 

YOR358W YLL041C 0.3800 0.8008 1.2639 1.3725 

YLR182W YLR286C -0.1208 0.8984 1.1082 1.0378 

YLR071C YLR286C 0.0349 0.6662 0.3324 0.4353 

YLR131C YLR286C -0.2762 0.6535 0.5338 0.4353 

YEL009C YOR202W 0.0554 0.9276 1.2653 1.1670 

YRL082C YOR202W 0.6075 0.8912 0.3199 0.3517 

YEL009C YPR035W -0.3737 0.9541 1.2653 1.2241 

YFL021W YPR035W -0.2153 0.9002 0.4095 0.3662 

YGR274C YPR120C 0.4075 0.8541 1.5266 1.4566 

YAL040C YPR120C -0.4331 0.7288 0.7248 0.8120 

YLR256W YPR191W -0.1491 0.9173 0.7762 0.7295 

YGL237C YPR191W -0.7333 0.8821 0.6456 0.7295 

YBL021C YPR191W -0.2231 0.7569 1.3748 1.4294 

YOR358W YPR191W 0.0937 0.7209 0.6227 0.7295 

YKL109W YPR191W 0.2663 0.6254 0.5339 0.7295 
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 (a) (b) 

Fig. 12.16. Genes in the Filkov’s dataset have their componentwise correlation 
coefficients, relative to gene (a) YBR240C and gene (b) YAL040C, greater than 
0.7. The known activation regulations with genes YBR240C and YAL040C as ac-
tivators are highlighted 

To see how causal relationships can be inferred from the algorithm, we 
chose the genes YBR240C and YAL040C as references and foundall other 
genes in the Filkov’s dataset (Filkov et al., 2002) which has a componen-
twise correlation coefficient greater than 0.7. There are 55 of the 288 genes 
for YBR240C and 59 of the 288 genes for YAL040C that satisfy this 
threshold. These two sets of genes with their scores are shown in Fig. 
12.16, and their oscillatory properties are clearly revealed when they are 
arranged such that their phases are in descending order. Within these 
genes, one known activation regulation gene YBR240C is contained in the 
first set and three one known activation regulation for gene YAL040C are 
contained in the second set. Note that genes below the reference gene have 
their phases lag by 0o to 180o relative to the reference gene’s phase, and 
they can be considered as potential activated candidates. On the other 
hand, genes above the reference gene have their phases lead by 0o to 180o,
and they can be considered as potential inhibited candidates. If we look at 
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the known activatees for the two examples shown in Fig. 12.16, we see 
that they are all located below their corresponding activators. The spectral 
component correlation method allows such causal relationships to be ob-
served. 

12.4.3 Gene Regulatory Network Analysis  

Although all cells in an organism have the same genomic data, the proteins 
synthesized in each cell vary according to cell type, time, and environ-
mental factors. The activity of a cell is determined by which of its genes 
are expressed, i.e., which genes are turned on, resulting in the active pro-
duction of their respective proteins. When a particular gene is expressed, 
its DNA is first transcribed into the complementary mRNA, which is then 
translated into the specific protein for which this gene codes. The tran-
scription rate of a gene is determined by the interaction of diverse regula-
tory proteins, i.e., transcriptional activators and repressors, with specific 
DNA sequences in the gene’s promoter. The expression level of each gene 
can be measured by measuring how many mRNA copies are present in the 
cell. High throughput techniques such as cDNA microarray allow us to 
systematically investigate the complex molecular processes and their inter-
actions at the genome level. By monitoring the expression levels of all 
genes within a cell simultaneously under specific condition using cDNA 
microarray, we can determine which genes are up-regulated, down-
regulated, or not expressed under a specific conditions, and detect any cor-
relations between the levels of expression of different genes. Using such 
information, the logic of gene regulation in a cell can be deciphered (De-
Risi et al., 1997). 

Different models of gene regulation have been proposed. The simplest 
genetic regulatory network is the Boolean network first introduced by 
Kauffman in the late 1960s (Kauffman, 1969). The network is represented 
as a directed graph G = (V, F), whose nodes V represent elements of the 
network, and F defines a topology of edges between the nodes and a set of 
Boolean functions. The Boolean network models each gene as being either 
ON or OFF, and the state of each gene at the next time step is determined 
by Boolean function of its input at the current time step. Despite its sim-
plicity, Boolean networks are able to provide valuable insights in the be-
havior of gene interactions (Kauffman, 1993, and Wuensche, 1999) and 
have been applied in the analysis of real gene expression data for applica-
tions such as the identification of drug targets for cancer therapy (Szallasi 
and Liang, 1998, and Huang, 1999). 
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Although the Boolean network has proved useful in gene regulation 
studies, there are concerns about the biological plausibility of such a sim-
ple model. For one thing, gene expression data have not binary but con-
tinuous. Moreover, gene expression data is generally noisy and contain a 
high level of uncertainty. Such considerations have led to the proposal of 
various modifications on the basic Boolean network, such as the noisy 
Boolean network (Akutsu et al., 2000), the probabilistic Boolean network 
(Shmulevich et al., 2002a,b), and the hybrid Boolean network, where each 
gene has a continuously valued internal state and a Boolean external state 
(Glass, 1975, and Glass and Pasternack, 1978), or asynchronously updated 
logic with intermediate threshold values (Thomas 1991, and Thieffry and 
Thomas, 1998). 

Other gene regulatory network models has also been proposed. The 
mRNA expression levels have been modeled (D’haeseleer et al., 1999, 
2000) during Central Nervous System (CNS) development and injury by 
using a linear additive model, where the expression level of a gene is mod-
eled as the weighted sum of the expression levels of other genes. Chen and 
He et al. (1999) proposed a number of linear differential equation models, 
which include both mRNA and protein levels, and showed how such mod-
els can be solved using linear algebra and Fourier transforms. Butte et al. 
(2000) introduced the concept of relevance network, where pairs of pat-
terns are compared and groups of patterns higher than a specific threshold 
will aggregate to form relevance networks. Several groups have proposed 
the use of Bayesian networks for genetic regulatory network modeling 
(Friedman et al., 2000; Hartemink et al., 2002; and Imoto et al., 2002a,b). 
Bayesian networks are a type of graphical model for capturing complex re-
lationships between a large amount of random variables by the directed 
acyclic graph encoding the Markov assumption. The modeling based on 
recurrent neural networks has also being shown to be potentially useful 
(Marnellos and Mjolsness, 1998; Marnellos et al., 2000; Vohradsky, 
2001a,b; and Vu and Vohradsky 2002). In such a model, the regulatory 
process is considered as the combinatorial action of gene products on the 
rate of expression of a particular gene, and the action is modulated by a 
particular transfer function to generate the response curves. The accumula-
tion of gene product, controlled by the regulators, is modified by degrada-
tion, usually modeled as a first order chemical reaction. In contrast with 
linear additive model, the recurrent neural network can model the nonlin-
earity in the genetic regulatory process due to the presence of a nonlinear 
transfer function in the model. 

Genetic regulatory network modeling is an active area of research in 
functional genomics. Although complete modeling of the genetic regula-
tory process is currently unattainable, with the availability of more ex-
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perimental data on the cellular and biochemical processes at the genome 
level, better understanding of the biology and chemistry of the transcrip-
tion and translation processes, and better modeling techniques, one can be 
hopeful of unraveling complex genetic interactions and the mechanisms of 
cellular processes in the near future. 
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